
Sampling the vertices of a polytope is still hard even when the
branchwidth is bounded

Lorenzo Najt

June 22, 2021

Abstract

We consider the complexity of sampling vertices of a polytope. A theorem of Khachiyan [27] uses the
circulation polytope of a directed graph to show that this sampling problem is NP-hard, in the sense
that a polynomial time sampler would imply NP = RP. It is known, also by work of Khachiyan et al.
[28], that the vertex enumeration problem is NP-hard for polyhedra, while it remains open for polytopes.
However, bounding the branchwidth has been shown to provide a total polynomial time algorithm for the
polytope vertex enumeration problem, and it is therefore natural to ask whether bounding branchwidth
makes vertex sampling tractable. We investigate this question and demonstrate the NP-hardness of
uniformly sampling vertices of a polytope given by {Ax = b, x ≥ 0}, where A has branchwidth ≤ 4.
To do so, we develop gadgets that build bounded branchwidth polytopes that have many vertices over
certificates of an NP-hard problem. In an appendix, we apply this gadget to provide an alternative proof
a recent theorem of Guo and Jerrum about sampling vertices from another class of polytopes. We also
study some related questions, such as the branchwidth of the circulation polytope, and show that the
vertices of a circulation polytope of bounded branchwidth can be sampled efficiently.

1 Introduction
Polyhedra arise naturally in computer science as the set of feasible solutions of a linear program, that is, as
the set of points satisfying some collection of linear inequalities. Bounded polyhedra are called polytopes.
The extremal points of a polytope, also known as its vertices, provide an alternative representation of the
feasible set, since every point in the feasible set is a convex combination of some of the vertices. In general,
one can pass algorithmically from a description of a polytope via inequalities to the description via the set
of vertices, but process is computationally very expensive as the set of vertices can be very large compared
to the set of inequalities. Despite this, certain questions about the set of vertices can be answered efficiently;
for instance, the ellipsoid algorithm allows one to find a vertex in polynomial time, provided one exists.

Faced with a large set of implicitly defined objects, some options for understanding it better include
uniformly sampling elements, or enumerating the set as efficiently as possible. The vertex uniform sampling
problem is known to be NP-hard (see [27] and appendix F), in the sense a polynomial time uniform sampler
would imply RP = NP. Since the number of vertices can be exponential in the number of constraints, the
best one can hope for regarding enumeration is an algorithm that spends polynomial time in the size of both
the input and the output, often called a total polynomial time algorithm. It has been shown that a total
polynomial time enumeration algorithm for the vertices of a polyhedron would imply P = NP [28], however,
whether there is a total polynomial time vertex enumeration algorithm in the case of polytopes (bounded
polyhedra) remains an open question.

On the other hand, when a parameter of the polytope called the branchwidth (§6) is bounded, the
vertices can be enumerated in total polynomial time [35]. This indicates that there is some chance that
bounding the branchwidth simplifies computational problems about the set of vertices. The vertex uniform
sampling problem, for polytopes of bounded branchwidth, has not been studied in the literature. Due to
the success of branchwidth in graph algorithms [9] and the result in [35] one can reasonably ask: is there a
polynomial time algorithm for uniformly sampling the vertices of a polytope of bounded branchwidth? We
answer this question in the negative, and show in Theorem 8.0.3 that uniformly sampling the vertices remains

1

Family of objects Vertex Enumeration Vertex Sampling

Polyhedra NP-hard [28] NP-hard [27]

Polytopes Open Problem NP-hard [27]

Polyhedra of bounded branch-
width

Open Problem NP-hard (This Paper)

Polytopes of bounded branch-
width

Total polynomial time algorithm
time [35] (The runtime expo-
nent depends on branchwidth,
and the existence of a fixed pa-
rameter tractable algorithm re-
mains an open problem.)

NP-hard (This Paper)

Non-degenerate polyhedra Total polynomial time algorithm
[5]

Open Problem?

{0, 12 , 1} polytopes Open Problem NP-hard [18]

{0, 1} polytopes Open Problem Open Problem [18]

Figure 1: The complexity of enumeration and sampling problems, for polyhedra of various kinds. We use
NP-hardness loosely, here it just means that a polynomial time solution to the problem collapses NP to a
class of efficiently solvable problems such as RP or P. We note that by arguments as in appendix C counting
and sampling are essentially equivalent, despite the lack of self-reducibility.

intractable even when the branchwidth of the polytope is bounded. Figure 1 summarizes the complexity
of vertex enumeration and sampling for various kinds of polyhedra. Our proof relies on a result about
the “restricted vertex problem” [14] from [35]. The main tool is a way to construct lifts of a polytope by
exploding certain vertices into hypercubes, which we call the hypercube gadget (§5).

Our proof is fundamentally distinct from the argument in [27], which relies on circulation polytopes.
Indeed, as we explain detail in the appendix, bounding the branchwidth of a circulation polytope makes the
vertex sampling problem polynomial time tractable. Additionally we show in appendix B that the natural p-
relation for this problem is not self reducible, unless P = NP, and examine in appendix F the branchwidth of
the circulation polytope used in Khachiyan’s proof, showing that in the bounded branchwidth case, vertices
can be sampled from the circulation polytope. In appendix A, we give an alternative proof via the hypercube
gadget of a theorem about sampling the vertices of a {0, 12 , 1}-polytope from [18].

2 Related Work
In [14], it was shown that for any graph G = (V,E) and s, t ∈ V a polyhedron can be constructed whose
vertices correspond to the simple s, t-paths in G. Using techniques of [25, Proposition 5.1], one can show that
a polynomial time algorithm for uniformly sampling simple s, t-paths does not exist unless RP = NP. Taken
together, these imply an intractability result for uniformly sampling from the vertices of a polyhedron.
Using the circulation polytope instead, one can show that efficiently sampling vertices of polytopes, i.e.
bounded polyhedra, would imply RP = NP [27]. Since a collapse like RP = NP would be very unlikely,
given that we believe P ̸= NP and P = RP = BPP, this is generally taken as evidence that these sampling
problems are intractable. We will informally describe sampling problems as intractable throughout, with the
understanding that this means that an efficient algorithm for approximate sampling would imply RP = NP.

There are intermediate complexity classes for hardness of sampling, such as relating the counting problem
to #BIS; [18] relates counting vertices of a certain class of polytopes defined by network matrices to #BIS. In
addition, motivated by the problem of sampling the vertices of a 0/1 polytope, [18] shows that sampling the
vertices from polytopes promised to have vertices in the set {0, 12 , 1} is NP-hard. We provide an alternative,

2

although closely related, route to their theorem in appendix A.
There are certain situations when the sampling problem can be done in polynomial time, such as if the

rank or dimension is fixed.1 Additionally, for certain polytopes there are efficient algorithms for approx-
imately uniformly sampling or counting the vertices. For instance, this is so for the bipartite matching
polytope by [24]. Other examples include: [3, 6, 7, 12, 22]. The aforementioned [18] provides some more
general settings under which sampling vertices can be reduced to counting integer solutions of network flow.
For some discussion of heuristic Monte-Carlo methods for counting vertices of polytopes, see [37].

A related problem is whether the random walk on the graph of the polytope mixes rapidly [26];. However,
since every polytope can arise as the vertex figure of another polytope, simply by taking a cone over the
polytope, the problem of implementing this random walk in general is just as hard as uniformly sampling
vertices of polytopes. Thus, the theoretical interest in this random walk provides another reason to be
interested in questions about uniformly sampling vertices.

Branchwidth of polytopes is a parameter that has made certain NP-hard problems on polytopes tractable.
Besides the vertex enumeration problem in [35], which we discussed in the introduction, [8] showed that inte-
ger programming with bounded branchwidth non-negative constraint matrices could be solved in pseudopoly-
nomial time, although the problem becomes NP-hard again when the signs of the entries in the constraint
matrix are unrestricted. They also show that the problem is pseudopolynomial time if in addition to the
constraint matrix, the variables are bounded inside of a box of the form [0, d]n. The empirical investigation
in [30] examines the practical usefulness of branchwidth as a parameter for solving integer programming
problems, and finds that certain situations it improved on black-box integer programming solvers.

Regarding [35] in more detail, we emphasize that their result is for enumerating the vertices of a polytope
of bounded branchwidth, not a polyhedron. They leave open the possibility that total polynomial time vertex
enumeration causes the collapse P = NP, as in [28], for polyhedra of bounded branchwidth. The topic of
vertex enumeration is motivated in [35] by applications to computational systems biology [2,15,40]. Finally,
as mentioned in [35], for non-degenerate polyhedra vertices can be enumerated in total polynomial time
[5, 10]. To the best of the authors knowledge, vertex uniform sampling and vertex counting have not been
studied in the literature for non-degenerate polyhedra.

3 Main Steps for Proving Hardness of Sampling
In this section we sketch out the main steps of the hardness of sampling result. We follow the general strategy
of Proposition 5.1 in [25], which has been used to prove hardness of sampling in [18, 27, 34] among many
other places. First, recall:

Definition 3.0.1 (RP). RP is the class of decisions problems for which there is a polynomial time randomized
algorithm that always answers NO if a instances is a NO-instance, and, if the instance is a YES-instance,
answers YES with probability ≥ 3/4.

The main steps of the argument are as follows:

1. We identify an NP-hard optimization problem about the vertices of a polytope. For a given polytope,
suppose that f : Vert(P) → N is the function we wish to maximize.

2. We find a way to efficiently build a family of associated polytopes P d, so that there is a map πd : P d → P ,
which restricts to a surjection on the vertices and has the property that |(πd)−1(x)∩Vert(P d)| = Θ(2f(x)d).

3. This means that if we draw a uniform vertex of P d, and apply πd to it, we end up with a random vertex of
P whose distribution is increasingly concentrated on the vertices maximizing f . In particular, we design
our construction so that the number of vertices above a vertex x grows exponentially in d at a rate that
depends on f(x).
1It is known [33] that a polytope of dimension d with m facets has O(md/2) vertices. Moreover, the enumeration problem

for fixed dimension can be solved in polynomial time [10]. Thus, uniform sampling can be achieved in polynomial time if the
dimension of the polytope {Ax ≤ b} is fixed. Similarly, if the rank r of the matrix A in {x ∈ Rn : Ax = b, x ≥ 0} is fixed,
then the number of basic feasible solutions is O(nr), so uniform sampling can again be achieved in polynomial time by simple
rejection sampling or enumeration. More refined questions about the complexity of counting and sampling with regard to these
parameters are open, to the best of the authors knowledge.

3

4. We then take d large enough so that the potentially large number of vertices x ∈ Vert(P) with f(x) <
max f is insignificant compared to the effect of the faster rate of growth. More precisely, if S ⊆ Vert(P)
is the set of vertices maximizing f , we ensure that (πd)−1(Sc) ∩ Vert(P d) ≫ (πd)−1(S) ∩ Vert(P d)

5. Thus, we can use a uniform sampler to provide an RP algorithm solving the decision version of that
NP-hard optimization problem. That is, for given P and k the algorithm builds P d, for some explicitly
calculated d, samples a vertex x from P d, and returns whether f(πd(x)) ≥ k. This is an RP algorithm
because it never finds an x with f(πd(x)) ≥ k when no such x can exist, and if there is such a πd(x) with
f(πd(x)) ≥ k, d has be tuned so that one is produced with probability ≥ 3/4.

The NP-hard problem we use is the restricted vertex problem, covered in §7. The construction of the P d

is done by the hypercube gadget (§5). The main technical step is ensuring that πd restricts to a surjection
on the vertices, and counting |πd(x) ∩ Vert(P d)|, which we cover in corollary 5.0.3.

4 Notation and Background
We establish the notation and conventions used in this paper, and state a few useful facts about the combi-
natorics of polyhedra and polytopes. Throughout, n will refer to the ambient dimension of the polyhedron.

Definition 4.0.1 (Equational form). Define P (A, b) := {x ∈ Rn : Ax = b, x ≥ 0}. This presentation of a
polyhedron is called equational form.

Definition 4.0.2. A polyhedron always refers to the tuple consisting of the set of points in a polyhedron
P (A, b) defined in equational form , and the constraints A and b: (P (A, b) = {x ∈ Rn : Ax = b, x ≥ 0}, A, b).

Definition 4.0.3 (Polytope). A polytope is a polyhedron (P (A, b), A, b) for which P (A, b) is a bounded set.

When we refer to “a polyhedron” or “a polytope” (bounded polyhedra) in this paper, we are implicitly
referring to a presentation of a polyhedron in equational form. This is important both for representing
polyhedron in a format that can be considered the input to algorithms, and for defining the notion of
branchwidth; a parameter of the algorithmic “complexity” of the polyhedra that has more to do with the
interactions between defining equations than it does with its intrinsic geometry. We will recall its definition
later.

The main object of study in this paper is the following:

Definition 4.0.4 (Vertices of a polytope). Let x ∈ P (A, b). Then x is said to be a vertex of P if there
is some affine hyperplane H so that H ∩ P (A, b) = {x}. The set of vertices of a polytope P is denoted by
Vert(P).

Later on, it will be convenient to identify vertices with the coordinates where they are zero.

Definition 4.0.5 (Support of a vertex). Let v ∈ Vert(P (A, b)). The zeros of v is the set {i ∈ [n] : vi = 0},
and the support of v is the set supp(v) = {i ∈ [n] : vi ̸= 0}.

Definition 4.0.6 (Restriction of a vector or matrix). We think of x ∈ Rn as a function on [n], when
convenient. So, if K ⊆ [n], for x ∈ Rn we let xK ∈ RK be the restriction of the variable. We think of this as
a row vector with |K| entries. Similarly, if A ∈ Rm ×Rn, we think of it as a Rm valued function on [n], and
denote by AK the restriction. Equivalently, this is the matrix made up of the columns of A in K. Concretely,
let A =

(
a1 . . . an

)
be a matrix, with columns a1, . . . , an indexed by [n]. For I = {i1, . . . , im} ⊆ [n], we

define AI =
(
ai1 . . . aim

)
.

We will need the following:

Lemma 4.0.7 (Lemma 4.2.1 in [31]). A point x ∈ P = P (A, b) is a vertex iff the columns of the matrix AK

are linearly independent, where K = supp(x).

This has the following corollary:

4

Corollary 4.0.8. If x, x′ are vertices of P = P (A, b), and supp(x) = supp(x′), then x = x′.

Proof. Let K = supp(x) = supp(x′). Then AK has linearly independent columns by lemma 4.0.7.. Moreover,
b = Ax = AKxK + AKcxKc = AKxK as xKc = 0. Similarly b = AKx

′
K . Thus, AK(xK − x′K) = 0. Since

AK has linearly independent columns, xK = x′K , thus x = x′.

We also use the following vocabulary:

Definition 4.0.9 (Lift of a polytope). Let P (A, b) be a polyhedron in Rn. A polyhedron Q in Rn × Rm is
said to be a lift of P if the projection onto the first n coordinates surjects onto the underlying set of P .

5 Hypercube Gadget
In this section we introduce a gadget similar to the chain of diamonds construction used in [25] to show that
uniformly sampling directed simple cycles is NP-hard. That result of [25] was then used in [27] to prove that
sampling a polytopes vertices is NP-hard. However, as discussed in appendix F, the circulation polytope
based construction of [27] cannot be used to show hardness of sampling vertices for branchwidth bounded
polytopes, since the polytope branchwidth bound translates into a graph branchwidth bound, which renders
the problem tractable. Therefore, in some sense, our argument abstracts away the main idea from the
circulation polytope argument into a gadget that can be applied directly to the polytope, and we are able
to prove a stronger theorem as a result.

This gadget takes a polytope P , defined in equational form P = P (A, b) = {x ∈ Rn : Ax = b, x ≥ 0},
along with a subsets I ⊆ [n], and builds a family of polytopes Pd,I , which are lifts of a polytope contained
in P . These lifts will be designed to have exponentially more vertices above the vertices of P that are the
certificates to an NP-hard problem defined in terms of (A, b, I). That NP-hard problem will be discussed in
§7.

Definition 5.0.1 (Hypercube Gadget). Let I ⊆ [n], and d ≥ 1. Suppose P is given by P = P (A, b) =
{x ∈ Rn : Ax = b, x ≥ 0}. Define a polytope P I,d by introducing variables yi,j and ysi,j for j = 1, . . . , d
and each i ∈ I, with the constraints yi,j , ysi,j ≥ 0 and yi,j + ysi,j = xi for each j = 1, . . . , d, i ∈ I. That is
P I,d = {(x, y, ys) ∈ Rn × (Rd)|I| × (Rd)|I| : Ax = b, (x, y, ys) ≥ 0, yi,j + ysi,j = xi,∀j ∈ [d], i ∈ I}. We let AI,d

denote the matrix defining P I,d, so P I,d = P (AI,d, [b1, . . . , bn, 0, . . . , 0]). Define a map πI,d : P I,d → P by
remembering only the x coordinates, that is πI,d(x, y, ys) = x. When clear from context we refer to this map
as π.

The conditions on the y variables are such that for fixed x, the y variables can take on values within a
hypercube: after eliminating slack variables and rewriting the yik+ysik = xi as an inequality gives 0 ≤ yik ≤ xi
for k = 1, . . . , d and i ∈ I. Thus, the intuition is that we have created a new polytope which has hypercube
of dimension d|supp(x) ∩ I| above a vertex x ∈ Vert(P). Moreover, as we verify shortly, the vertices of
those hypercube fibers account exactly for all the vertices of the lift. See fig. 2 for some depictions of this
construction. The following lemma verifies this intuition and characterizes the vertices of the hypercube
gadget.

Lemma 5.0.2.
Vert(P I,d) =

∪
x∈Vert(P)

∪
y∈Vert(Hx)

{(x, y)}

where Hx = {(y, ys) : y, ys ≥ 0, yi,j + ysi,j = xi} is the hypercube in P I,d above x.

Proof. To save on notation, we will write P I,d without the slack variables. So, let P̃ = {(x, y) ∈ Rn ×
(Rd)|I| : ((x, y) ≥ 0) ∧ (Ax = b) ∧ (∀i ∈ I, j ∈ [d], (yi,j ≤ xi))}, and let π(x, y) = x. First, we show that
π(Vert(P̃)) ⊆ Vert(P), and then we will use that to finish the proof of the lemma.. Throughout we will use
the following characterization of vertices of a polytope: a point x ∈ P is a vertex of P iff there do not exist
x′, x′′ ∈ P , x′ ̸= x′′ and λ ∈ (0, 1) with x = λx′ + (1− λ)x′′.

5

P

x1

y11
y12

x2

x2 = 1

x2 = 0

0 ≤ y11 ≤ x1

0 ≤ y12 ≤ x2

x1

x1 = 0

x1 = 1
P

P{x1},2
y11
y21

x1

0

1

Figure 2: Two examples of the hypercube gadget, albeit presented in Ax ≤ b form for sake of visualization.
On the right we depict an instance of the hypercube gadget applied to P = {0 ≤ x1 ≤ 1}, with d = 2 and
I = {1}. The entire 1+2 = 3 dimensional polytope created by the gadget is drawn, and the arrow shows the
projection map π. The left hand picture depicts two fibers of the hypercube gadget with I = {1, 2} above
the polytope given by 0 ≤ x1, x2 ≤ 1. The additional variables of the lift are y11 , y12 . Since the polytope is
2 + 2 = 4 dimensional, we cannot draw the entire thing, and instead we draw fibers of the projection map.
The fiber π−1({x2 = 0}) is in blue and π−1({x2 = 1}) is in green. Note that the two fibers are disjoint in
P I,1, but as we only draw the x1, y11 , y12 axis for the lift, we cannot see that.

1. Proof of π(Vert(P̃)) ⊆ Vert(P): Suppose that (x, y) ∈ Vert(P̃) with π(v) ̸∈ Vert(P). Then, there
are x′ ̸= x′′ ∈ P and λ ∈ (0, 1) such that π(v) = λx′ + (1 − λ)x′′. Moreover, we have that yik ≤ xi
for each i ∈ I and k ∈ [d]. Therefore, we have that for each i ∈ I, there are some αik ∈ [0, 1] with
yik = αikxi. We define y′ ∈ Vy by y′ik = αikx

′
i and y′′ by y′′ik = αikx

′
i. We then consider the points

v′ = (x′, y′) and v′′ = (x′′, y′′). We observe that v′, v′′ ∈ P̃ since the y coordinates were designed to
satisfy the defining condition: y′ik = αikx

′
i ≤ x′i, and likewise for the y′′. We now obtain a contradiction

by verifying that v = λv′ + (1− λ)v′′: s this is clear for the x coordinates, we only need to observe that
λy′ik + (1− λ)y′′ik = λαikx

′
i + (1− λ)αikx

′′
i = αik(λx

′
i + (1− λ)x′′i) = αikxi = yik.

2. Conclusion of proof: First, we show that Vert(P̃) ⊆
∪

x∈Vert(P)

∪
y∈Vert(Hx)

{(x, y)}. Suppose that (x, y) ∈
Vert(P̃) but y is not a vertex of Hx, where Hx = {yik, i ∈ I, k = 1, . . . d : y ≥ 0, yik ≤ xi}. Then there are
y′ ̸= y′′ ∈ Hx and λ ∈ (0, 1) so that y = λy′ + (1− λ)y′′. Thus, we have (x, y′), (x, y′′) ∈ P̃ with (x, y) =
λ(x, y′) + (1− λ)(x, y′′), contradicting the assumption that (x, y) ∈ Vert(P̃). Since we already know that
x ∈ Vert(P) from the previous bullet, the inclusion follows. We next show the other inclusion, namely
that Vert(P̃) ⊇

∪
x∈Vert(P)

∪
y∈Vert(Hx)

{(x, y)}. Let x ∈ Vert(P) and y ∈ Vert(Hx). For contradiction,
suppose that such an (x, y) ̸∈ Vert(P̃) is not a vertex. Then we have (x′, y′) ̸= (x′′, y′′) ∈ P̃ and λ ∈ (0, 1)
with λ(x′, y′)+(1−λ)(x′′, y′′) = (x, y). If x′ ̸= x′′, then x was not a vertex of P , a contradiction, since we
showed in the first part that the vertices of P̃ map to the vertices of P . If x′ = x′′ but (x′, y′) ̸= (y′, y′′)
we must have y′ ̸= y′′, meaning that y ̸∈ Vert(Hx), which contradicts our assumption.

This immediately gives the following corollary:

Corollary 5.0.3. With notation as in definition 5.0.1, We have that:

1. Vert(P I,d) ⊆ π−1(Vert(P))
2. For x ∈ Vert(P), |π−1(x) ∩ Vert(P I,d)| = 2d|supp(x)∩I|.

Remark 5.0.4. TODO: Relate to 1-flux modules from [35]?

6

Figure 3: The hierarchical decomposition of a set X given by an X-labelled cubic tree. The dots represent
the 8 elements of X, and the circles represent the blocks.

6 Branchwidth
In this section, we examine how the branchwidth of a polytope changes under the hypercube gadget. In this
section we give the definition of branchwidth, which we break into a few subdefinitions in order to make
later arguments easier to state precisely.

As motivation for the concept of branchwidth, we recall that one of the common features of NP-hard prob-
lems are variables with complex interactions between different choices of their settings. Some approaches in
fixed parameter tractability try to limit interaction between variables, and hope that the limited interactions
make certain decision problems simpler. In the linear programming setting, our variables are non-negative
real numbers (x1, . . . , xn) = x, and our constraints are given by the equation Ax = b. Branchwidth will
control the interaction between variables by means of a tree whose leaves are labelled by columns of a matrix
A. The tree can be thought of as a hierarchical two-partitioning of the set of columns, where the interaction
between the blocks of the 2-partitions is what we intend to control. The measurement of interaction between
two sets of columns will related to the dimension of the intersection of their spans. We now explain in detail.

Definition 6.0.1 (X-labelled Cubic Trees). A tree T with nodes of degree 3 or 1 is called a cubic tree. The
degree 1 nodes of T are also called its leaves, leaves(T). An X-labelling ν of a cubic tree T is a bijection
between leaves(T) and a set X, ν : leaves(T) → X. An X-labelled cubic tree is a pair consisting of a cubic
tree T and a labelling ν of its leaves (T, ν).

An X-labelled cubic tree provides a family of 2-partitions of X:

Definition 6.0.2 (Set of partitions induced by an X-labelled tree). Consider an X-labelled tree (T, ν).
For each e ∈ E(T), let Pν(e) = {Le, Re} be the 2-partition of X with blocks given by the ν labels of the
leaves of the two connected components of T \ e. That is, Pν(e) = {{ν(v) : for v ∈ leaves(Y)} for Y ∈
ConnectedComponents(T\e)}. We also define the set of partitions of X induced by (T, ν) as Partitions((T, ν)) :=
{Pν(e) : e ∈ E(T)}

Remark 6.0.3 (Pedagogical remark regarding branchwidth.). It is useful to recognize that an X labelled
tree produces a hierarchical family of two partitions of X. That is, let T be an X-labelled tree, and consider
any edge e = {a, b} in T , with corresponding 2-partitions of X, {A,B}, where we have chosen the labels so
that a is in the connected component, say Ta, of T \ e whose leaves correspond to A. Then, Ta gives us an
A-labelled cubic tree, from which we can again obtain various 2-partitions. See fig. 3 for an illustration of
this.

From an algorithmic perspective, these hierarchical 2-partitions give a framework for obtaining a solution
to a problem by gluing together solutions to subproblems, in the way that is usually done in dynamic pro-
gramming. The paper [8] applies this idea to integer programming, for instance, and many algorithms based
on branch or tree decompositions of graphs follow a similar strategy.

We now specialize X-labelled trees to the set of columns of a matrix to arrive at the notion of a branch
decomposition:

Definition 6.0.4 (Branch Decomposition). Let A be a matrix, and let [n] index the columns of A. A branch
decomposition of A is an [n]-labelled cubic tree (T, ν). We let BD(A) denote the set of branch decompositions
of A.

7

Thus, we have established a way to hierarchically decompose the columns of a matrix A. Next, we turn
to measuring the interaction between complementary pieces.

Definition 6.0.5 (Width and the Connectivity Function of a Branch Decomposition). Let (T, ν) be a
branch decomposition of A. The width of the edge e with {Le, Re} = Pν(e) is defined to be λ(e) :=
rk(ALe) + rk(ARe) − rk(A) + 1 = dim(Span(ALe) ∩ Span(ARe)) + 1. The function λ(T,ν) : E(T) → N is
called the connectivity function of the branch decomposition. The width of the branch decomposition is
maxe∈E(T) λ(T,ν)(e)).

Finally, we can define the branchwidth of a matrix:

Definition 6.0.6 (Branchwidth). The branchwidth of a matrix A, bw(A), is the minimum width of any
branch decomposition of A. That is,

bw(A) = min
(T,ν)∈BD(A)

(max
e∈E(T)

λ(T,ν)(e))

Remark 6.0.7. There are two conventions for branchwidth in the literature, which differ by 1. [8, 36] uses
λ(e) = r(Le) + r(Re)− r(A) + 1, and [35] uses λ(e) = r(Le) + r(Re)− r(A). To comport with the majority
of the literature, we follow the first convention. Since we use a result from [35] for our reduction, this will
require a slight translation when we get to it.

We now define notion of branchwidth for polyhedra defined in equation form. Note that this definition
makes explicit reference to the system of equations defining A, and is not just a measurement of the geometry
of the convex set of points making up the polytope.

Definition 6.0.8 (Branchwidth of a polytope). Let P = (P (A, b), A, b)) be a polytope. Then branchwidth of
P is bw(A).

As mentioned previously, polytopes of bounded branchwidth are sometimes more amenable to computa-
tion. One can see [8] and [35] for examples. However, in contrast to the similar notion of graph branchwidth
or treewidth, the usefulness of branchwidth appears very limited. In particular, we will show that the vertex
sampling problem remains hard even when the branchwidth is 4.

6.1 Branchwidth Lemmas
In this section we prove several lemmas about branchwidth that we will use repeatedly in our calculations.
In particular, we use these to calculate the affect of the hypercube gadget on branchwidth.

Lemma 6.1.1. Let A be any matrix, and let A′ =
(
A v

)
, where v is any column vector of the same

dimension as any other column of A. Then bw(A) ≤ bw(A′).

Proof. Let T ′ be an optimal tree decomposition for A′. Let T be obtained by deleting the leaf corresponding
to n, the last column of A′, and smoothing its parent node. For each partition of [n + 1], (L,R), obtained
from T ′, assume without loss that n ∈ R, so that the corresponding partition of [n] obtained from T is
(L,R \ n). Since Span(AL) ∩ Span(AR\n) ⊆ Span(A′

L) ∩ Span(A′
R), the claim follows.

Lemma 6.1.2. If S is a permutation matrix, then bw(AS) = A.

Proof. Note that the affect of right multiplication by S is to permute the columns of A. Thus, we can use
the permutation matrix S to translate any branch decomposition of A into one of AS, without changing the
width, and vica-versa.

The following definition will be useful for describing calculations with branchwidth.

Definition 6.1.3 (Splitting a leaf). Let (T, ν) be an [n]-labelled cubic tree, and let i ∈ [n]. Let L Be the
leaves of T , and let v = ν−1(i) ∈ L. Let T ′ be the tree obtained by adding two leaf nodes, a and b, connected
to the node v = ν−1(i) of T , and let ν′ be the labelling of the leaves of T ′ such that ν′|L\v = ν|L\v and
ν′(a) = i, ν′(b) = n+ 1. Then (T ′, ν′) is an [n+ 1]-labelled cubic tree, which we refer to as the splitting of
T at the leaf i. See fig. 4.

8

T

n

n

n+ 1

Figure 4: An illustration of splitting the leaf n into two leaves labelled n and n+ 1.

Splitting a leaf changes the set of partitions in the following way:
Lemma 6.1.4. Let (T, ν) be a tree decomposition of a matrix A, and let (T ′, ν′) be obtained by splitting T
at the leaf n. The set of partitions of [n + 1] induced by T is given by Partitions((T ′, ν′)) = {{L,R ∪ {n +
1}} for {L,R} ∈ Partitions((T, ν)) s.t. n ∈ R} ∪ {{n}, {1, 2, . . . , n− 1, n+ 1}} ∪ {{n+ 1}, [n]}.

We define two more operations on matrices, which, together with the previous lemmas, will let us calculate
the effect of the hypercube gadget on branchwidth.
Definition 6.1.5 (Parallel Extension). Let A = (v1, . . . , vn) be a matrix. Suppose that A′ = (v1, . . . , vn, vn);
that is, A′ is obtained from A by adding a copy of its last column. Then we say that A′ is a parallel extension
of A.
Lemma 6.1.6 (Parallel Extension Lemma). Let A′ be a parallel extension of A. Then, bw(A) ≤ bw(A′) ≤
max(2,bw(A)).
Proof. The lower bound bw(A) ≤ bw(A′) follows from lemma 6.1.1, so we consider the other bound. Let
(T, ν) be an optimal branch decomposition of A, and let (T ′, ν′) be the splitting of T at the leaf n. From
lemma 6.1.4 we know that Partitions((T ′, ν′)) = {{L,R ∪ {n + 1}} for {L,R} ∈ Partitions((T, ν)) s.t. n ∈
R}∪{{n}, {1, 2, . . . , n−1, n+1}}∪{{n+1}, [n]}. For the last two partitions, the dimension of the intersection
cannot exceed 1, hence the corresponding width is at most 2. For the partitions of the form {{L,R ∪ {n+
1}} for {L,R} ∈ Partitions((T, ν)) s.t. n ∈ R} we observe that Span(AR) = Span(AR∪{n+1}), because
n ∈ R, and Span(AL) = Span(A′

L), hence the width of the corresponding edges is unchanged. Thus, we have
a branch decomposition for A′ with width ≤ max(2,bw(A)), proving that bw(A′) ≤ max(2,bw(A)).

Definition 6.1.7 (Series extension). Given a matrix A, a matrix A′ = (A 0
v 1), such that v is zero in every

entry except exactly one, will be called a series extension of A.
Lemma 6.1.8 (Series Extension Lemma). Let A ∈ Rn×m, and define A′ = (A 0

v 1) be any series extension of
A. Then bw(A) ≤ bw(A′) ≤ max(2,bw(A)).
Proof. Assume that [n] indexes the columns of A. Using lemma 6.1.2 we can assume that the coordinate
where v is nonzero is the nth coordinate. Let (T ′, ν′) be the branch decomposition for A′ obtained by
splitting (T, ν) at the leaf n. Again, from lemma 6.1.4 we know that Partitions((T ′, ν′)) = {{L,R ∪ {n +
1}} for {L,R} ∈ Partitions((T, ν)) s.t. n ∈ R} ∪ {{n}, {1, 2, . . . , n − 1, n + 1}} ∪ {{n + 1}, [n]}. For the
last two partitions induced by T ′, namely, {{n + 1}, [n]} and {{n}, {1 . . . , n − 1, n + 1}}, we note that the
dimension of the span of the intersections can be at most 1, so the corresponding width is at most 2.

For the partitions induced by (T ′, ν′) of the form {L,R ∪ {n + 1}} for {L,R} ∈ Partitions((T, ν)) with
n ∈ R, we first observe that i(Span(AL)) = Span(A′

L) where i : Rm → Rm+1 is given by i(v) = (v, 0),
since v|L = 0. Next, we observe that Span(A′

R∪{n+1}) = Span(i(Span(A|R)), em+1)). Thus, Span(A′
L) ∩

Span(A′
R∪{n+1}) = i(Span(AL)∩ i(Span(AR)) = i(Span(AL)∩Span(AR)), as i is injective, which means the

edges of T have the same width in both T and T ′. In addition to bounding the width of the edges of T ′ not
already covered, this also implies the lemma’s claim that bw(A) ≤ bw(A′).

Thus, putting these two calculations together, we see that the width of the branch decomposition (T ′, ν′)
is at most max(2,bw(A)), which implies bw(A′) ≤ max(2,bw(A)).

9

Remark 6.1.9. The reason for the terminology used in the parallel extension is that the last two columns
of A′ are parallel elements of the matric matroid. The reason for the series terminology is that any basis of
the matric matroid A′ contains at least one of i and n + 1, where i is the column where v in the definition
is nonzero. Hence, the new element n+ 1 is in series with the element i.

6.2 Hypercube Gadget and Branchwidth
We bound the influence of the hypercube gadget on branchwidth by showing that it is a sequence of series-
parallel extensions, and then applying the lemmas of the previous section.

Lemma 6.2.1. Suppose that the polytope P is defined by {x ∈ Rn : Ax = b, x ≥ 0}. Let P I,d = P ′ be given
in equational form by P (A′, b′). Then bw(A′) = max(bw(A), 2).

Proof. First, note that introducing a pair of variables yi,j , ysi,j with the equation yi,j + ysi,j = xi changes the
defining matrix A by adding two new columns, and then a row vector that is −1 in the ith column, and
that ends with two 1s and is zero everywhere else. That is: A′ = (A 0 0

v 1 1) where v = −δi. This is a series
extension, followed by a parallel extension: A→

(
A 0

−δi 1

)
→

(
A 0 0

−δi 1 1

)
. The constraint matrix, AI,d, defining

the hypercube gadget is in turn obtained by repeating this sequence of series then parallel extensions for
each i ∈ I and for each j = 1, . . . d. The claim now follows by Lemma 6.1.6 and Lemma 6.1.8.

Remark 6.2.2. This perspective shows that the hypercube gadget, being a sequence of series and parallel
extensions applied to the set of variables of interest, is closely related to the chain of diamonds gadget used
in Proposition 5.1 of [25].

7 Restricted Vertex Problem
Both theorems of this paper are reductions from the following problem:

Restricted Vertex Problem (RVP)
Input: An integer m×n matrix A, a vector b ∈ Zm

and I ⊆ [n].
Output: Is there a vertex x of {Ax = b, x ≥ 0}

such that xi > 0 for all i ∈ I?

In other words, this problem asks whether there is a vertex x of P (A, b) with support containing I.

Remark 7.0.1 (See [14]). We note that if problem asked instead whether there is a point x ∈ P (A, b), not
necessarily a vertex, with xi > 0, then the problem can be solved by the following linear program:

max(m)

(x,m) ∈ Rn
≥0 × R≥0

Ax = b

m ≤ xi, i ∈ I

This linear program works because if there is a point x with xi > 0 for all i ∈ I, then the optimum value
of m is > 0. Otherwise, the optimum value is 0. The difficulty in the restricted vertex problem is thus that
it requires a vertex of P (A, b) with the prescribed property, not just any point. In addition, note that the
vertices of this linear program do not necessarily map down to the vertices of P (A, b), as in general the optimal
solutions will occur in the interior of some face; for an explicit example, one can take x1+x2 = 1, I = {1, 2}.

Work in [14] showed the restricted vertex problem to be strongly NP-complete on polytopes. They
investigated this in the context of analyzing backtracking algorithms for vertex enumeration, for which the
above problem would be a key pruning subroutine. Remark 7.0.1 is from [14] and is a tool in a pruning
subroutine for a face enumeration algorithm they present. In [35] the restricted vertex problem was analyzed
again in the context of enumeration, but this time with branchwidth constraints. In particular, they proved:

10

Theorem 7.0.2. [35][Theorem 10] RVP is NP-complete on the class of polytopes of branchwidth ≤ 4.

Theorem 7.0.2 will be the NP-hardness result which we will use to show the hardness of sampling; we
will use the hypercube gadget in order to concentrate probability on vertices that maximize |supp(v) ∩ I|,
which is the optimization problem version of the decision problem RVP.

8 Proof of Sampling Intractability
In this section we prove the theorem on intractability of sampling, following the idea introduced in [25]. To
state a stronger theorem, we recall the notion of total variation:

Definition 8.0.1. Let P,Q be two probability distributions on a finite set X. Then ||P − Q||TV =
supA⊆X |P (A)−Q(A)|.

The intuition for this definition is that if ||P − Q||TV ≤ ϵ, then the probability that an event A occurs
differs by at most ϵ under in P or Q. In particular, if ϵ is sufficiently small then P and Q are practically
indistinguishable under all statistical tests 1A. In these hardness of sampling settings, it is typical to be
unable to sample from a distribution that is within any nontrivial constant total variation distance from the
target distribution, because all we need is a constant probably of sampling from the set of certificates to the
hard problem in order to get the collapse NP = RP.

We need the following lemma:

Lemma 8.0.2. A polytope P (A, b) ⊆ Rn, i.e. where A has n columns, has at most 2n vertices.

Proof. Each vertex is given by some basis of A, which is specified by a subset of the set of columns.

Theorem 8.0.3 (Intractability of sampling vertices). Fix any α, 0 ≤ α < 1. Suppose that there was
a polynomial time probabilistic Turing machine M such that for each polytope P (A, b) of branchwidth ≤
4, M(A, b) outputs a sample from qP , where qP is any probability distribution on Vert(P) with ||qP −
UniformVert(P)|| ≤ α. Then RP = NP.

Proof. Consider an instance ((A, b), I) of RVP with P (A, b) a polytope of branchwidth ≤ 4. Let S ⊆ Vert(P)
be the set of vertices solving that instance of RVP, that is, for x ∈ S is a vertex with supp(x) ⊇ I, and
suppose that |S| > 0. Construct P d,I =: P d, i.e. by calculating the constraints according to the definition
of the hypercube gadget; then, by lemma 5.0.2, P d has 2|I|d vertices above any vertex of P solving the given
instance of RVP. Above any other vertex, it has at most 2(|I|−1)d vertices. Suppose now that this instance
of RVP has a solution. Since P (A, b) has at most 2n vertices, P d has at most 2n2(|I|−1)d vertices which
are not witnesses to the instance of RVP, and at least 2|I|d vertices which are. If H = π−1(S) ∩ ∥(P d) and
N = Vert(P d) \H, we have |H| ≥ D|N | with D = 2d−n, so |H|

|H|+|N | ≥
D

1+D , and so a uniform sample from
the vertices of P d projects under π to a solution to RVP with probability at least 2d−n

1+2d−n ≥ 1 − 2−m for
d = n +m. If we take m so that 1 − 2−m ≥ 1 − α/2, then a sample from M applied to P d, which we can
obtain in polynomial time since P d has branchwidth ≤ 4 by lemma 6.2.1, has probability at least α/2 of
sampling from a witness to the RVP instance. If the RVP instance had no solutions, this algorithm of course
never produces one. Thus, as this entire process takes polynomial time, M provides an RP algorithm for
the NP-hard problem RVP, proving the claim.

NP-hardness of the corresponding counting problem can also be shown, see appendix C.

Remark 8.0.4. We require that M run correctly only on polytopes that have bounded branchwidth. In
particular, one can formulate this as a promise problem, as in [18]. We do not make any claims about
verifying the branchwidth bound.

11

9 Acknowledgements
This paper grew out of a question and answer on the theoretical computer science stack exchange [21]. The
author wishes to thank Heng Guo and Peter Shor for valuable input on that question. The author also wishes
to thank the moderators and creators of the stackexchange community, without which this paper not exist.
In addition, the author would like to thank various members of the cs theory and mathematics community
at UW-Madison for helpful conversations on related topics, especially Eric Bach, Jin-Yi Cai, Shuchi Chawla,
Jordan Ellenberg, Tianyu Liu, Sebastien Roch, Dieter van Melkebeek and Stephen J. Wright. Encouraging
correspondence with Heng Guo, Arne Riemers and Leen Stougie was also helpful. The author acknowledges
the following grants: NSF RTG award DMS-1502553, NSF Award DMS-2023239 and the Prof. Amar G.
Bose Research Grant.

References
[1] Scott Aaronson. P ?

=NP. In Open problems in mathematics, pages 1–122. Springer, 2016.

[2] Vicente Acuña, Paulo Vieira Milreu, Ludovic Cottret, Alberto Marchetti-Spaccamela, Leen Stougie, and
Marie-France Sagot. Algorithms and complexity of enumerating minimal precursor sets in genome-wide
metabolic networks. Bioinformatics, 28(19):2474–2483, 2012.

[3] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials II:
high-dimensional walks and an FPRAS for counting bases of a matroid. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 1–12. ACM, 2019.

[4] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs. Journal
of Algorithms, 12(2):308–340, 1991.

[5] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra. Discrete & Computational Geometry, 8(3):295–313, 1992.

[6] Andrei Broder. Generating random spanning trees. In 30th Annual symposium on foundations of
computer science, pages 442–447. IEEE, 1989.

[7] Mary Cryan, Martin Dyer, Haiko Müller, and Leen Stougie. Random walks on the vertices of trans-
portation polytopes with constant number of sources. Random Structures & Algorithms, 33(3):333–355,
2008.

[8] William H Cunningham and Jim Geelen. On integer programming and the branch-width of the con-
straint matrix. In International Conference on Integer Programming and Combinatorial Optimization,
pages 158–166. Springer, 2007.

[9] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

[10] Martin E Dyer. The complexity of vertex enumeration methods. Mathematics of Operations Research,
8(3):381–402, 1983.

[11] H-D Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic. Springer Science & Business
Media, 2013.

[12] Tomas Feder and Milena Mihail. Balanced matroids. In Proceedings of the Twenty Fourth Annual ACM
Symposium on the Theory of Computing, pages 26–38. Citeseer, 1992.

[13] Komei Fukuda. Notes on matching polytope.

[14] Komei Fukuda, Thomas M Liebling, and François Margot. Analysis of backtrack algorithms for listing
all vertices and all faces of a convex polyhedron. Computational Geometry, 8(1):1–12, 1997.

12

[15] Julien Gagneur and Steffen Klamt. Computation of elementary modes: a unifying framework and the
new binary approach. BMC bioinformatics, 5(1):1–21, 2004.

[16] Jim Geelen, Bert Gerards, and Geoff Whittle. Tangles, tree-decompositions and grids in matroids.
Journal of Combinatorial Theory, Series B, 99(4):657–667, 2009.

[17] André Große, Jörg Rothe, and Gerd Wechsung. On computing the smallest four-coloring of planar
graphs and non-self-reducible sets in p. Information processing letters, 99(6):215–221, 2006.

[18] Heng Guo and Mark Jerrum. Counting vertices of integer polytopes defined by facets. arXiv preprint
arXiv:2105.01469, 2021.

[19] Pinar Heggernes. Treewidth, partial k-trees, and chordal graphs.

[20] Illya V Hicks and Nolan B McMurray Jr. The branchwidth of graphs and their cycle matroids. Journal
of Combinatorial Theory, Series B, 97(5):681–692, 2007.

[21] Lorenzo Najt (https://cstheory.stackexchange.com/users/44995/lorenzo najt). Can one efficiently uni-
formly sample a neighbor of a vertex in the graph of a polytope? Theoretical Computer Science Stack
Exchange.

[22] Mark Huber. Exact sampling from perfect matchings of dense nearly regular bipartite graphs. arXiv
preprint math/0310059, 2003.

[23] Russell Impagliazzo and Avi Wigderson. P = BPP unless E has subexponential circuits: derandomizing
the XOR lemma. In Proceedings of the 29th STOC, pages 220–229, 1997.

[24] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries, acm sympos. Theory of computing, 33:712–721, 2001.

[25] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Computer Science, 43:169–188, January 1986.

[26] Volker Kaibel. On the expansion of graphs of 0/1-polytopes. In The Sharpest Cut: The Impact of
Manfred Padberg and His Work, pages 199–216. SIAM, 2004.

[27] Leonid Khachiyan. Transversal hypergraphs and families of polyhedral cones. In Advances in Convex
Analysis and Global Optimization, pages 105–118. Springer, 2001.

[28] Leonid Khachiyan, Endre Boros, Konrad Borys, Vladimir Gurvich, and Khaled Elbassioni. Generating
all vertices of a polyhedron is hard. In Twentieth Anniversary Volume:, pages 1–17. Springer, 2009.

[29] Samir Khuller and Vijay V Vazirani. Planar graph coloring is not self-reducible, assuming P ̸= NP.
Theoretical Computer Science, 88(1):183–189, 1991.

[30] Susan Margulies, Jing Ma, and Illya V Hicks. The Cunningham-Geelen method in practice: branch-
decompositions and integer programming. INFORMS Journal on Computing, 25(4):599–610, 2013.

[31] Jiri Matousek and Bernd Gärtner. Understanding and using linear programming. Springer Science &
Business Media, 2007.

[32] Frédéric Mazoit and Stéphan Thomassé. Branchwidth of graphic matroids. Surveys in combinatorics,
346(275-286):93, 2007.

[33] Peter McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17(2):179–184,
1970.

[34] Lorenzo Najt, Daryl DeFord, and Justin Solomon. Complexity and geometry of sampling connected
graph partitions. arXiv preprint arXiv:1908.08881, 2019.

[35] Arne C Reimers and Leen Stougie. Polynomial time vertex enumeration of convex polytopes of bounded
branch-width. arXiv preprint arXiv:1404.5584, 2014.

13

[36] Neil Robertson and Paul D Seymour. Graph minors. X. obstructions to tree-decomposition. Journal of
Combinatorial Theory, Series B, 52(2):153–190, 1991.

[37] Robert Salomone, Radislav Vaisman, and Dirk P Kroese. Estimating the number of vertices in convex
polytopes. In Proceedings of the International Conference on Operations Research and Statistics, pages
96–105. Citeseer, 2016.

[38] Claus-Peter Schnorr. On self-transformable combinatorial problems. In Mathematical Programming at
Oberwolfach, pages 225–243. Springer, 1981.

[39] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[40] Stefan Schuster and Claus Hilgetag. On elementary flux modes in biochemical reaction systems at
steady state. Journal of Biological Systems, 2(02):165–182, 1994.

A Another Application of the Hypercube Gadget
This section concerns the following kind of polytope:

Definition A.0.1. A {0, 12 , 1}-polytope is a polytope P (A, b) = {Ax = b, x ≥ 0} such that the coefficients of
each vertex in P (A, b) are from the set {0, 12 , 1}.

We can use the hypercube gadget to provide an alternative version of the proof of Theorem 3 from [18],
which shows that sampling vertices of {0, 12 , 1} polytopes is NP-hard. There are two main challenges they
overcome in their proof: 1) identifying a polytope P (G) associated to a graph G whose vertices correspond
to feasible solutions for an NP-hard optimization problem on G, 2) showing that feasible solutions for that
optimization problem are NP-hard to sample. As usual, the second step involves designing a gadget that
modifies the original graph G so that uniform samples of feasible solutions of a related graph G′ can be
transformed into samples from feasible solutions on G that are optimal with high probability.

Instead of needing to design a problem specific gadget for the second step, which involves some creativity
and careful bookkeeping, we can use the hypercube gadget. The key insight is that a function of the support
of the vertices of P (G) from step 1) coincides with the objective function for the optimization problem on
G, connecting this set up to the optimization version of the RVP problem:

Optimization version of Restricted
Vertex Problem (ORVP)

Input: An integer m×n matrix A, a vector b ∈ Zm

and I ⊆ [n].
Output:maxx∈Vert(P (A,b)) |supp(x) ∩ I|

We can summarize one key step of the Guo et al. proof as follows:

Theorem A.0.2. (Following [18][Theorem 3]) ORVP is NP-hard for P {0, 12 , 1} polytopes. More pre-
cisely, given a tuple (A, b, k, I) with the promise2 that P (A, b) is a {0, 12 , 1} polytope, deciding whether
ORVP(A, b, I) ≥ k is NP-hard.

Proof. Consider the perfect 2-matching (P2M) polytope of a graph G, which is given by introducing a
variable xuv for each edge uv, and constraints:

0 ≤ xuv ≤ 2∑
uv∈E(G)

xuv = 2,∀u ∈ V

2Recall that the promise condition means that a decider only needs to produce the correct answer when the promise is true,
and does not need to verify the promise.

14

To make this consistent with framework, we put this into slack form. Thus, the variables are xuv, yuv ≥ 0
and they are subject to:

xuv + yuv = 2∑
uv∈E(G)

xuv = 2,∀u ∈ V

Recall that an edge cover of a graph G = (V,E) is a subset S ⊆ E such that each vertex in V is incident
to edge in S. By Proposition 2 of [18], the vertices of the P2M polytope of G, P2M(G), correspond to edge
covers of G consisting of a matching M , with xe = 2 for e ∈M , and vertex-disjoint odd cycles that are also
disjoint from M , with xe = 1 for edges in the odd cycles. Among such edge covers, there is a cover with
|V | = n edges iff there is an edge cover consisting only of disjoint odd-cycles. An odd cycle cover refers to
such an edge cover that consists only of disjoint odd-cycles. We note that we can obtain the set underlying
this combinatorial representation of a vertex by intersecting the support of the vertex with the x variables
{xuv : uv ∈ E} = X. If there are no odd cycle covers, then |supp(x) ∩X| < n for all x ∈ Vert(P2M(G)),
and if there is then there is a vertex x with |supp(x)∩X| = n. Thus, the problem of determining if there is
a vertex x of P2M(G) with |supp(x) ∩X| ≥ n is equivalent to determining if there is an odd-cycle cover of
G.

Guo et al show in [18][Theorem 3] that deciding if there is an odd-cycle cover on a bipartite graph is NP
hard. Thus, the problem maxx∈Vert(P2M(G)) |supp(x) ∩X| is NP-hard. Since this is a special case of ORVP
problem, it follows that ORVP is NP hard on this class of polytopes.

In order to apply our machinery to {0, 1/2, 1} polytopes, we abstract theorem C.0.4 into the following:

Lemma A.0.3. Suppose P is a class of polytopes defined by linear inequalities, that is closed under hypercube
gadget, and such that the optimization version of the restricted vertex problem is NP -hard on P.

Fix any α, 0 ≤ α < 1. Suppose that there was a polynomial time probabilistic Turing machine M such that
for each polytope P (A, b) in P, M(A, b) outputs a sample from qP , where qP is any probability distribution
on Vert(P) with ||qP − UniformVert(P)|| ≤ α. Then RP = NP.

Proof. Consider an instance (((A, b), I), k) of ORVP with P (A, b) ∈ P a polytope in Rn.
Suppose that maxx∈Vert(P) |supp(x) ∩ I| = m. We let S = argmaxx∈Vert(P)|supp(x) ∩ I|.
Construct P d,I =: P d; then, by lemma 5.0.2, P d has 2md vertices above any vertex of P in S. Above any

other vertex, it has at most 2(m−1)d vertices.
LetH = π−1(S)∩Vert(P d) andN = Vert(P d)\H. Since P (A, b) has at most 2n vertices, |N | ≤ 2n2(m−1)d

and |H| ≥ 2md. Therefore, we have |H| ≥ D|N | with D = 2d−n, so |H|
|H|+|N | ≥

D
1+D , and so a uniform sample

from the vertices of P d projects under π to an element of S with probability at least 2d−n

1+2d−n ≥ 1− 2−m for
d = n+m. If we take m so that 1− 2−m ≥ 1− α/2, then a sample from M applied to P d has probability
at least α/2 of sampling from S. By amplification, we can raise this to 3/4 probability, and we obtain a
randomized algorithm for the instance of ORVP which gives the correct answer with probability 3/4. Since
only false negatives are possible in this algorithm, since we always obtain a candidate witness in the YES
case, this implies that RP = NP.

We can now use the hypercube gadget to complete the proof of Theorem 3 of Guo et al.:

Theorem A.0.4. The uniform sampling problem is NP hard on polytopes promised to be {0, 12 , 1}-polytopes.

Proof. Let H denote the class of {0, 12 , 1} polytopes. First, we show that that the hypercube gadget preserves
H. Consider P ∈ H. By lemma 5.0.2, Vert(P I,d) =

∪
x∈Vert(P)

∪
y∈Vert(Hx)

{(x, y)} for x ∈ Vert(P),
x ∈ {0, 12 , 1}, and Hx = {(y, ys) : y, ys ≥ 0, yi,j + ysi,j = xi}. To conclude, we note that Hx is a {0, 12 , 1}
polytope for any x ∈ {0, 12 , 1}

n. Since, theorem A.0.2 shows RVP is NP hard on H, it follows by lemma A.0.3
that the uniform sampling problem is NP hard.

Remark A.0.5. Guo et al. are motivated by the problem of vertex sampling a 0/1 polytope, meaning a
polytope such that each coordinate of each vertex is in {0, 1}. Our approach does not work in that setting,
since ORVP is solvable by maximizing

∑
i∈I xi via linear programming.

15

Remark A.0.6. The two matching polytope is given by introducing a variable xuv for each edge uv, and
constraints:

0 ≤ xuv ≤ 2∑
uv∈E(G)

xuv = 2,∀u ∈ V

The second constraint has constraint matrix given by the incidence matrix of underlying directed graph.
Thus, using the calculations in theorem F.2, the branchwidth of this linear system is at least the branchwidth
of the underlying undirected graph. Since, by considerations similar to appendix F, Courcelle’s theorem shows
that the odd cycle cover problem is in P on directed graphs whose underlying graph has bounded branchwidth,
it follows that this family of polytopes do not provide an alternative proof that vertex sampling is hard when
the branchwidth is bounded.

B Non Self-Reducibility
In this section we examine the self-reducibility of a natural p-relation associated to the set of vertices of
polytopes. The argument is similar to the one on [29]; in particular the sense of self-reducibility that we use
in definition B.0.3 is in the same as in [25, 29, 38]. In addition, Theorem 3.5 of [17] provides some general
conditions under which one can show that a set is not self-reducible, unless P ̸= NP, showing that there is an
abundance of examples of such p-relations. TODO: Check if their theorem implies this one directly. For us, the
non self-reducibility of this p-relation only matters in as much as it means that we cannot directly appeal to
the equivalence of counting and sampling to prove hardness of counting vertices in appendix C.

We fix some finite alphabet Σ, and for w ∈ Σ∗, where Σ∗ denotes all finite length words that can be
spelled with characters from Σ, including the empty word. we let |w| denote the number of symbols in
w. Recall that the notion of a p-relation is meant to encode the idea of a (problem, solution) pair, where
solutions are not too big and a proposed solution to a problem can be efficiently verified as a solution or not.
That is:

Definition B.0.1 (p-relation [25]). A relation R ⊆ Σ∗ × Σ∗ is a p-relation if :

1. There is a polynomial p(n) such that (x, y) ∈ R implies |y| ≤ p(|x|).
2. There is a polynomial time Turing machine that decides R, i.e. M(x#y) = 1 if (x, y) ∈ R and M(x#y) = 0

if (x, y) ̸∈ R. Here # is some character not in Σ.

For x ∈ Σ∗, we define R(x) := {y ∈ Σ∗ : (x, y) ∈ R}.

As an example of a p-relation is given by taking the x-coordinate to encode a graph G, and the y-
coordinate to encode a perfect matching of G. If G has n edges, with some canonical order coming from the
encoding, y could be represented by a binary string indicating which edges are in the graph. The p-relation
for the vertices of a polytope, namely (Polytope in equational form, vertex), will be obtained by encoding a
vertex of the polyhedron P (A, b) = {x ∈ Rn : Ax = b, x ≥ 0} by the support vector as a string in {0, 1}n.
We state this precisely below in lemma B.0.2. The previously mentioned papers on the vertex enumeration
problem, namely [13,35], also use this encoding.

Lemma B.0.2. We use Σ = {0, 1, ; , (,)} and assume some standard encoding of integers, vectors and
matrices using those symbols. The relation defined by

RPolytope = {((A, b), s) : A ∈ Zm×n, b ∈ Zm,∃v ∈ Vert(P (A, b)), s = supp(v) ∈ {0, 1}n, P (A, b) a polytope}

is a p-relation.

Proof. First, we check that R is a p-relation. Since s is a binary vector of length n, clearly |s| ≤ |(A, b)|.
Thus, it suffices to show that ((A, b), s) ∈ R can be checked in time polynomial in |(A, b)|, which requires
checking whether there is a vertex of P (A, b) with support exactly s. Note that this is not the restricted
vertex problem, which asks for the support vector to be larger than s.

16

Consider any vector s ∈ {0, 1}n. Let S = {i : si > 0}. Let As denote the set of columns of A of indices
i with si ̸= 0. Suppose that there is a solution Asxs = b with xs ≥ 0 and the columns of As are linearly
independent. Define the point x to agree with xs on the coordinates in S, and to be zero elsewhere. Then,
x is a feasible point and, by lemma 4.0.7, it is also a vertex.

On the other hand, if As is not linearly independent, then by lemma 4.0.7 there is no vertex witih support
S. If As is linearly independent, but the solution to Asxs = b has some negative coordinates, or there is no
solution at all, then there are no feasible points with support s.

Therefore, there is a vertex with support vector s iff As is linearly independent and there is a solution
xs ≥ 0 to Asxs = b. Since we can efficiently check linear independence of the columns of As using Gaussian
elimination and the existence of a solution to Asxs = b with xs ≥ 0 by using any polynomial time linear
programming algorithm, we can check this condition in polynomial time.

We now turn to self-reducibility (definition B.0.3). Roughly speaking, a p-relation is self-reducible if the
set of solutions to an instance x can be partitioned using the solutions to a small set of subproblems of the
same kind. One of the reasons to be interested in self-reducible p-relations is that, for self-reducible relations,
the approximate sampling and approximate counting problems are equivalent [25]. For instance, the graph
matching p-relation is self-reducible, since given an edge e of G, the matchings of G can be partitioned into
the matchings containing e and those not containing e.

Definition B.0.3 (Self-reducibility of a p-relation [25]). A p-relation R ⊆ Σ∗×Σ∗ is said to be self reducible
if there are polynomial time computable functions l : Σ∗ → N, σ : Σ∗ → N and ψ : Σ∗ × Σ∗ → Σ∗ such that:

1. σ(x) = O(log(|x|))
2. y ∈ R(x) implies |y| = l(x)
3. l(x) > 0 implies σ(x) > 0.
4. |ψ(x,w)| ≤ |x|.
5. ∀x ∈ Σ∗, R(x) =

∪
w∈{0,1}σ(x){wy : y ∈ R(ψ(x,w))}

6. l(ψ(x,w)) = max{0, l(x)− |w|}.

The last two conditions can equivalently be expressed as: for all x ∈ Σ∗, y = y1, . . . yn ∈ Σ∗, (x, y) ∈ R)
iff (ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . yn) ∈ R.

One strategy for showing that self-reducibility of some particular p-relation implies NP = P relies on
the following search to decision reduction:

Lemma B.0.4 (Implicit in [29]). Suppose that R is a self-reducible p-relation, and suppose that there is
a polynomial time algorithm for determining if R(x) = {y : (x, y) ∈ R} is non-empty. Then, there is a
polynomial time algorithm that, given x and z ∈ {0, 1}k, decides if there is a y ∈ R(x) such that y = zz′ for
some z′ ∈ {0, 1}l(x)−k.

.

Proof. The algorithm, in pythonic pseudocode, follows. If z is a string, then z[: j] denote the first j characters,
and z[j + 1 :] denotes the remaining characters.

1 begin{lstlisting}
2 f is_empty(set):
3 return len(set) == 0
4
5 f has_solution(x, z):
6 if z == '':
7 return not is_empty(R(x))
8 if sigma(x) <= |z|:
9 return has_solution(R(psi(x, z[:sigma(x)] , z[sigma(x) + 1:])))

10 else:
11 found_solution = False

17

12 for w in {0,1}^{sigma(x) - |z|}:
13 found_solution += not is_empty(R(psi(x, z[:sigma(x)] + w))))
14 return found_solution

We note that because σ(x) = O(log(x)) the for-loop in the else branch takes polynomial time. In addition,
because |z| ≤ l(x), and the length decreases on each recursive call, there are at most l(x) recursive calls.
Thus, the entire algorithm runs in polynomial time.

We will next show that this search to decision reduction can be used to prove the existence of a solution
with a prescribed set of 1, i.e. whose support, if interpreted as a function on [l(x)], contains a specific set.
Ultimately, this will be connected to the restricted vertex problem.

Lemma B.0.5. Suppose that R is a self-reducible p-relation, and suppose that there is a polynomial time
algorithm for determining if R(x) = {y : (x, y) ∈ R} is non-empty. Furthermore, suppose that R is such
that, for instance x and permutation σ, there is another instance xσ such that R(xσ) = {σ(y) : y ∈ R(x)},
such that xσ can be calculated in polynomial time from (x, σ) .3 Then there is a polynomial time algorithm
that, given x and z ∈ {0, 1}l(x), determines if there is a y ∈ R(x) with y ≥ z.

Proof. Let 1j denotes the all ones string of length j, and 0j denote the all zeros string of length j. Given z, we
can find a permutation σ so that σ(z) = 1j0l(x)−j . There is then an element y ∈ R(xσ) so that y ≥ 1j0l(x)−j

iff there is an element y′ ∈ R(x) so that y ≥ z; this is because y ∈ R(xσ) iff y = σ(y′) for y ∈ R(x), and
σ(y′) ≥ 1j0l−j iff y′ ≥ σ−1(1j0l−j) = z. Finally, since y ≥ 1j0l(x)−j is equivalent to y[: j] = 1j , using
lemma B.0.4, we can decide the existence of such a y in polynomial time.

To use this in our setting, we need the following lemma:

Lemma B.0.6. Given a polyhedron P (A, b), there is a polynomial time algorithm to check whether P (A, b)
is a polytope, and that it has a vertex.

Proof. Checking that it is a polytope amounts to calculating maxxi and minxi for all i, which can be done
using a polynomial time linear program. A polytope has a vertex iff it is non-empty, and we can again use
linear programming to check that there is a feasible solution.

Theorem B.0.7. RPolytope is not self-reducible unless P = NP.

Proof. By lemma B.0.6, we have a polynomial time algorithm to check whether RP ((A, b)) = ∅. In addition,
we note that for any x = (A, b) ∈ Σ∗ and σ ∈ Sl(x), the instance (xσ) is given by (ASσ, bSσ), where Sσ is
the permutation matrix of σ. Thus, if R was self-reducible, all of the hypothesis of appendix B would be
satisfied. However, this implies that the restricted vertex problem would be solvable in polynomial time,
which would imply P = NP.

For self-reducible structures, there is a well-known equivalence between counting and sampling [25].
Despite the non-self reducibility, we show that the hypercube gadget is enough to prove that the marginal
counts necessary for sampling could be made using a Turing machine that can count vertices, see lemma C.0.3.

Remark B.0.8. This is similar to the situation in [34] with connected partitions and simple cycles: there
the structures are not self reducible, but one can use a chain of bigons gadget to relate counting and marginal
counts. We remark that there is an analogy between the hypercube gadget and the chain of bigons gadgets
used that investigation: indeed, as mentioned in §6.2 the hypercube gadget can be thought of as a series of
parallel extensions followed by series extensions, which, in the graph context, is the same as the chain of
bigons gadget.

3This awkward sounding condition just amounts to settings where we can order the variables however we like, for instance
by relabelling the edges of a graph, or reordering the columns of the constraint matrix of a linear program.

18

C Intractability of Approximate Counting
In this section we show that, under the standard complexity theory assumption that RP ̸= P (see [1, 23]),
there do not exist approximation algorithms for counting vertices of a polytope given in equational form.
As a byproduct of the proof we regain an equivalence between counting and sampling, despite the non self
reducibility of the p-relation. We again use the hypercube gadget to reduce to RVP. We use the following
notation to simplify the statement of our theorem:

Definition C.0.1 (Randomized polynomial-time constant-factor approximation algorithm (r-RPCA)). An
r-RPCA for a function problem T : Σ∗ → N is a probabilistic Turing machine A with the following property:
A runs in time poly(|x|) and has P(r−1T (x) ≤ A(x) ≤ rT (x)) ≥ 2/3.

Lemma C.0.2. Let A be any matrix. If A′ is obtained from A by adding a row to A consisting of a vector
that is nonzero in exactly one entry, then bw(A′) ≤ max(2,bw(A)).

Proof. A′ is obtained from A by a series extension, and then by deleting the added column. Thus the lemma
follows from lemma F.2.4 and lemma 6.1.1.

The following lemma shows that we can turn approximate vertex counters into approximate counters for
marginal counts, without losing too much in the approximation ratio.

Lemma C.0.3. For any (A, b) and I, J ⊆ [n], define Vert(P (A, b))I,J := {v ∈ Vert(P (A, b)), supp(v) ∩ I =
I, supp(v)∩J = ∅}. Suppose that there is an r-RPCA of any polytope given in the form P (A, b) that achieves
approximation ratio of r > 0 with probability ≥ 2/3. Then, for any ϵ > 0, there is an reϵ-RPCA for the
counting problem ((A, b), I, J) → |Vert(P (A, b))I,J | .

Proof. We define PI,J,d by PI,J,d := {x ∈ PI,J,d : xj = 0,∀j ∈ J}; this is equivalent to defining QJ =
{x ∈ P : xj = 0,∀j ∈ J} and then PI,J,d = (QJ)I,d. We have bw(QJ) ≤ max(bw(P), 2) by lemma C.0.2,
thus bw(PI,J,d) ≤ max(bw(QJ), 2) ≤ max(bw(P), 2 by lemma 6.2.1. Let a := |Vert(PI,J,d)| and ak :=
|{v ∈ Vert(P) : |supp(v) ∩ I| = k, supp(v) ∩ J = ∅}|. Let s = |I|. From corollary 5.0.3 we have that
a =

∑s
k=0 2

dkak. Suppose that â is within multiplicative error r of a. We will argue that â/2ds is within
multiplicative error reϵ of as, provided that d = n + ⌈log2(1/ϵ)⌉ and that as ̸= 0. The case as = 0 can be
checked in BPP given the RPCA for counting vertices, by considering the rate of growth of a as a function
of d.4 Thus, we can assume the algorithm has already determined if as = 0 and terminated with its estimate
for as as 0 if so.

We now check the assertion on multiplicative error of the estimator â/2sd. We are given that a/r ≤ â ≤ ra,
into which we can substitute a =

∑s
k=0 2

dkak = 2sd(as +
∑s−1

k=0 2
d(k−s)) and then divide by 2sd, producing:

1
r (as +

∑s−1
k=0 ak2

(k−s)d) ≤ â/2sd ≤ r(as +
∑s−1

k=0 ak2
(k−s)d). Finally, we use that

∑s
k=0 ak ≤ |Vert(P)| ≤ 2n,

as ≥ 1 nd 2(k−s)d ≤ 2−d for k = 0, . . . , s− 1 to obtain the upper bound in the following, whereas the lower
bound is trivial since eϵ > 1:

1

reϵ
as ≤

1

r
as ≤

1

r
(1 +

s−1∑
k=0

ak
as

2(k−s)d)as ≤ â/2sd ≤ r(1 +

s−1∑
k=0

ak
as

2(k−s)d)as ≤ r(1 + 2n2−d)as ≤ r(1 + ϵ)as ≤ reϵas

Since the overhead in this construction is polynomial, in that we only need to write down the Poly(|A|)
equations defining PI,J,d and then do some arithmetic with integers that have polynomially many bits, the
entire algorithm takes polynomial time in Poly(|A|).

We now prove the main theorem of this section.

Theorem C.0.4. Unless NP = RP, for all r > 0 there is no r-RPCA for counting vertices of a polytope
P (A, b), even if A has branchwidth ≤ 4.

4Take d = n + 1 + log2(r). If as = 0, then a =
∑s−1

k=0 2
dkak ≤ 2n2d(s−1) = 2n+(n+1+log2(r))(s−1) = 2ns+s−1rs−1. If

as ≥ 1, then a ≥ as2ds ≥ 2(n+1+log2(r))s = 2ns+s2r. Thus, we have a promised multiplicative gap of 2r, so an approximation
algorithm with ratio r that succeeded 2/3 of the time would put deciding if as = 0 into BPP.

19

Proof. Suppose that there was an r-RPCA. Then by lemma C.0.3 there would be a 2r-RPCA for the
marginal counts, |Vert(P (A, b))I,J |. Given an instance ((A, b), I, J) of RVP, a 2r-RPCA could determine
whether |Vert(P (A, b))I,J | ≥ 1 or |Vert(P (A, b))I,J | = 0 in BPP, solving the RVP problem, which we know
to be NP-hard. This would put NP ⊆ BPP, from which it is known that NP = RP follows.

D Additional Branchwidth Lemmas
These lemmas will be used in other parts of the appendix.

Lemma D.0.1. Let A be any matrix, and let A′ be obtained from A by adding a new column. That is,
A′ =

(
A v

)
. Then bw(A) ≤ bw(A′) ≤ max(bw(A) + 1, 2).

Proof. The first inequality, bw(A) ≤ bw(A′), was proven already in lemma 6.1.6. For the second inequality,
suppose the columns of A are indexed by [n]. Let (T, ν) be an minimal width branch decomposition for
A, and split it at the leaf n to obtain a branch decomposition for A′, (T ′, ν′); let λ, λ′ be the respective
connectivity functions. Let e ∈ E(T). Then e defines a partition of columns of A, {L,R}, and also a
partition of A′, say {L′, R′}. Without loss, we can assume that the n + 1st column, v, is in R′. Then
Span(L′) ∩ Span(R′) = Span(L) ∩ Span(R, v) ⊆ (Span(L) ∩ Span(R)) + Span(v), and so the dimension of
the intersection of the spans increases by at most one. In terms of the connectivity function, we have proven
that λ′(e) ≤ λ(e) + 1 for e ∈ E(T). For edges e ∈ E(T ′) \E(T), one of the blocks has size one, so λ′(e) ≤ 2.
This proves the second inequality.

Lemma D.0.2. Let A ∈ Rn×m, and define A′ = (Av) for any vector v; that is, A′ is obtained from A by
adding an additional row. Then bw(A)− 1 ≤ bw(A′) ≤ bw(A) + 1.

Proof. Let [n] index the columns of A. Let (T, ν) be an optimal branch decomposition for A, and consider
it as a branch decomposition for A′; let λ, λ′ be the respective connectivity functions. Then, for any
partition (L,R) of [n], we have Span(A′

L)∩Span(A′
R) ⊆ Span(i(Span(AL, AR), em+1), where i : Rm → Rm+1

extends a vector by zero: i(v) = (v, 0). Thus, we have that λ′(e) ≤ λ(e) + 1 for all e ∈ E(T), from which
bw(A′) ≤ bw(A) + 1 follows. To obtain the lower bound, we observe that for any matrices M and (Mv)
rk(M) ≤ rk(M ′) ≤ rk(M) + 1, hence for any e ∈ E(T) inducing a partition (L,R) of the columns, we have
λ′(e) = rk(A′

L) + rk(A′
R)− rk(A′) + 1 ≥ rk(AL) + rk(AR)− rk(A)− 1 + 1 = λ(e)− 1.

Example D.0.3. Both situations in lemma D.0.2 can happen; that is, the inequality is tight:

1. bw(
(

1 1 0
1 1 0
0 1 0

)
) = 1, while bw((1 1 0

1 1 0)) = 2.

2. bw((1 0 0
0 0 0)) = 1, while bw(

(
1 0 0
0 0 0
0 1 1

)
) = 2.

Proof. There is a unique cubic tree with three leaves. The partitions correspond to each of the three partitions
of [n] into a 2-partition with non-empty blocks. Therefore, the branchwidth is maxi∈[3] dim(Span(Ai) ∩
Span(A[3]\i)) + 1. This can be computed for each of the four matrices.

Lemma D.0.4 (Row Space Lemma). The A be any matrix, and let a be a vector in the row space of A. The,
let A′ be the matrix (Aa); that is, a matrix obtained by adding adding a as a row to A′. Then bw(A′) = bw(A).

Proof. We note that if M ′is obtained from M by adding a row from the row space, then rk(M ′) = rk(M).
This implies a [n]-labelled cubic tree has the same width for both A and A′.

The following is also useful:

Lemma D.0.5 (Rank Bound). Let A be any matrix. Then bw(A) ≤ rk(A) + 1, where rk(A) is the rank of
the matrix.

Proof. Any branch decomposition will prove this, since dim(Span(ALe
)∩Span(ARe

))+1 ≤ dim(Span(A))+
1.

Lemma D.0.6. If U is any invertible matrix, then bw(UA) = bw(A).

20

Proof. This follows because Span(UAI) ∩ Span(UAIc) = U(Span(AI) ∩ Span(AIc)), for any subset I ⊆ [n],
where U acts on subspaces in the usual way.

The next lemma allows us to remove constant variables from a system of equations; that is, variables xi
so that Ax = b imposes the constraint xi = bj for some j. We will use this later on in order to bound the
branchwidth of the system of linear equations that are used for the hardness of the restricted vertex problem.

Lemma D.0.7 (Removing constant variables). Let A be any matrix. Suppose that there is a row of A
containing a single non-zero entry in the ith spot. Then if A′ is A with the ith column deleted, bw(A′) =
bw(A).

Proof. Without loss, we can assume that i is the last column, n, and that the row is the last row, say
m. Using lemma D.0.6 we can clear the entire nth column, except for the entry in the mth row, without
changing the branchwidth. Thus, we can assume that A is of the form: (B 0

0 1). We have that A′ = (B0), thus
bw(A′) = bw(B) by lemma D.0.4.

It remains to show that bw(B) = bw(A). We know from lemma D.0.4 and lemma 6.1.1 than bw(A) ≥
bw(B). To establish that bw(B) ≥ bw(A), consider any branch decomposition (T, ν) of A. We obtain a
branch decomposition of B by merging the leaf labelled n with its sibling and parent, and labelling the
result n − 1. Call the resulting branch decomposition of B T̄ . For any e ∈ E(T̄), it induces a partition
L and R of [n − 1], and assuming that n − 1 ∈ R, considering e an edge of T , it induces the partition L,
R ∪ {n}. Then, if i : Rn−1 → Rn is the natural embedding into the first n − 1 coordinates, then we have
i(Span(BL)) = Span(AL) and i(Span(BR)) + en = Span(AR). In particular, we have that i(Span(BL) ∩
Span(BR)) ⊆ Span(AL)∩Span(AR). Since dim(Span(AL)∩Span(AR)) ≤ bw(A)−1 by definition, the claim
is proven.

E Restricted Vertex Problem Under Branchwidth Constraints
This section reviews some details of Theorem 10 from [35], which appeared above as Theorem 7.0.2.

We require the following auxiliary problem:

Single Constraint Integer Programming
Feasibility (SCIPF)

Input: A non-negative vector a ∈ Zn and an inte-
ger b.

Output: Whether there is an x ∈ {0, 1}n satisfying
a · x = b

SCIPF is a reformulation of the subset sum problem, and is thus weakly NP-complete [35]. Reimers et.
al. [35] encode SCIPF into a polyhedron P with a designated variable u, such that P has a vertex with u > 0
iff there is a solution ax = b, with x ∈ {0, 1}n. (The authors of [35] use x0 instead of u, I have opted for the
latter here to clarify notation.) A definition of this polytope follows, after which we verify its branchwidth
and the claimed properties.

Definition E.1. Given an instance of SCIPF, ax = b, define S(a, b) to have non-negative coordinates
(x, x̄, y, ȳ, u, z) of dimensions (n, n, n, n, 1, 1) and to be constrainted by the following equations:

a · x+ u− (b+ 1)z = 0 (E.1)
1 · y + 1 · x− nz = 0 (E.2)

xi + x̄i = z, i ∈ {1, 2, . . . , n} (E.3)
yi + ȳi = z, i ∈ {1, 2, . . . , n} (E.4)

2z − u = 1 (E.5)

The x̄, ȳ are slack variables and 1 denotes the all ones vector.

We will now bound the branchwidth of S(a, b):

21

Proposition E.0.1. The branchwidth of P = S(a, b) is ≤ 4.

Proof. We let A be the coefficient matrix of P with the column z deleted. We will show that A has branch
width ≤ 3. The proposition then follows from lemma D.0.1. After deleting the z variable, the equation
eq. (E.5) becomes u = 1. We then appeal to lemma D.0.7 to remove u from the system without changing
the branchwidth any further. After making these deletions, the system A(x, x̄, y, ȳ) = 0 is described by:

a · x = 0

1 · (y + x) = 0

xi + x̄i = 0, i ∈ {1, 2, . . . , n}
yi + ȳsi = 0, i ∈ {1, 2, . . . , n}

In particular, ordering the variables as (x, x̄, y, ȳ) the matrix A is given by the following, where the variables
are listed in order x1, . . . , xn, x̄1, . . . , x̄n, y1, . . . , yn, ȳ1, . . . , ȳn):

A =

a1 . . . an 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0

1 . . . 0 −1 . . . 0 0 . . . 0 0 . . . 0

0 1 . . . 0 0 −1 . . . 0 0 . . . 0 0 . . . 0
...

0 . . . 0 0 . . . 0 1 . . . 0 −1 . . . 0

0 . . . 0 0 . . . 0 0 1 . . . 0 0 −1 . . . 0
...

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

The matrix A is obtained from the matrix

A′ =

a1 . . . an 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0

by repeated series extensions, and a permutation of the columns. Therefore, lemma 6.1.6 and lemma 6.1.2
show that bw(A) ≤ max(bw(A′), 2). Finally, we observe that that bw(A′) ≤ 3 by lemma D.0.5.

Reimers et al related a SCIPF instance (a, b) to the existence of certain vertices of S(a, b).

Theorem E.1 ([35] Theorem 8). The existence of a solution to {x ∈ {0, 1}n : ax = b} is equivalent to
|{(x, y, u, z) ∈ Vert(S(a, b)) : u > 0}| ̸= 0.

Proof. See [35].

So far S(a, b) is a potentially unbounded polyhedron. To obtain a polytope, we need the notion of the
size of a linear system, briefly reviewed in the following subsection.

E.1 The size of a linear system
Definition E.2 (Size). The size of a rational number p/q, stored as a pair of integers p and q, is size(p/q) =
1+⌈log2(p)+1⌉+⌈log2(q)+1⌉. The size of a matrix A = (αi,j) ∈Mm,n(Q) is defined by mn+

∑
i,j size(αij).

22

Lemma E.2 (Vertices of polytopes are polynomial in size). Consider a polytope P (A, b) = {x ∈ Rn : Ax =
b, x ≥ 0} where A has m rows. If v ∈ Vert(P (A, b)), then for any i ∈ [n], size(vi) ≤ m(n2(2 + 4size(A)) +
size(b)). In particular, |vi| ≤ 2m(n2(2+4size(A))+size(b)) and, if vi > 0, then |vi| ≥ 2−m(n2(2+4size(A))+size(b)).

Proof. Let B be a basis corresponding to the vertex v, so AB denotes the corresponding minor of A and we
have vB = A−1

B b with vi = 0 for i ̸∈ B. By proposition 3.2 in [39], we have that size(det(AB)) ≤ 2size(AB) ≤
2size(A). In particular, if M is any minor of AB , we have size(det(M)) ≤ 2size(A). Since each entry in
A−1

B is of the form det(M)/det(AB), for some minor M of A, we have that the size of each entry of A−1
B is

bounded by 1 + 4size(A). Thus, size(A−1
B) ≤ n2 + n2(1 + 4size(A)). It follows that the size of any entry of

A−1
B b is ≤ (n2(2 + 4size(A)) + size(b)) which is the main claim of the lemma. The other two claims follow.

Recall that our goal is to replace the potentially unbounded SCIPF polyhedron with a polytope. We
will do this by new constraints that do not cut out any of the original vertices, and which do not increase
the branchwidth. To wrap up the proof, in the next section we’ll use the support condition in the restricted
vertex problem to focus only on vertices that were not introduced by the new constraint.

Lemma E.3. Let P (A, b) be a polyhedron in Rn. Take Γ to be any real number such that for all vertices
of P , each coordinate of v is < Γ. For instance, by lemma E.2, Γ = 2n

2(1+2size(A))size(p) + 1 suffices. Let
Q = {(x,w) ∈ Rn+n

≥0 : Ax = b, xi + wi = Γ for i = 1, 2, 3 . . . , n}. Then, Q is a polytope and {(x,w) ∈
Vert(Q) : w > 0} is in bijection with Vert(P), where the bijection is given by the map (x,w) → x.

Proof. It is clear that Q is bounded, since the coordinates are non-negative and ≤ Γ. We note that Q is
linearly isomorphic to Q′ = {x ∈ Rn : Ax = b, xi ≤ Γ for i = 1, 2, 3, . . . , n} via the projection π(x,w) = x.
Moreover, the vertices of Q with w > 0 map under π to the vertices of Q′ with xi < Γ for all i. Therefore,
as all the vertices of P have maxi xi < Γ and every v ∈ Vert(Q′) \ Vert(P) has maxi vi = Γ, the vertices of
Q′ with maxi xi < Γ are the vertices of P .

E.2 Concluding the reduction
Theorem E.4 (Translation of Theorem 10 from Reimers and Arne). RVP is NP-hard on polytopes with
branchwidth ≤ 4.

Proof. Given an instance of SCIPF, ax = b, we construct P (a, b) as in definition E.1. By theorem E.1, the
existence of a vertex of P with u > 0 is equivalent to the existence of a solution x ∈ {0, 1}n with ax = b.
We construct the polytope Q as in appendix E.1, and by that lemma it follows that Q has a vertex with
u,w > 0 iff P has a vertex with u > 0. Thus, that instance of SCIPF has a solution iff the instance of the
restricted vertex problem given by (P, {u,w1, . . . , wn}) has a solution.

Since Γ is has bit length polynomial in the binary encoding of A, b, the construction of the matrix
representation of Q(a, b) from (a, b) is polynomial time. Thus solving RVP on polyhedra of the form Q(a, b)
with I = {u,w1, . . . , wn} is NP-hard. As the matrix defining Q is obtained by a sequence of series extensions
of the matrix defining P , it follows by lemma 6.1.8 that bw(Q) ≤ max(bw(P), 2) ≤ 4.Therefore, solving
RV P on polytopes with bw ≤ 4 is NP-hard.

Remark E.2.1. The reduction in [35] only needs to introduce a single new variable, instead of n of them,
because of the equations defining P . Otherwise it is essentially the same.

F Branchwidth of the Circulation Polytope
As mentioned in the introduction, [27] proves that sampling vertices is NP-hard by using the circulation
polytope of a directed graph. We will review this construction and argument below. One could wonder
whether circulation polytopes are already of small branchwidth. In this section we verify that they are not,
without further restrictions on the class of graphs. Additionally, we show that the vertex sampling problem
is fixed parameter tractable in the branchwidth when restricted to class of circulation polytopes.

23

Definition F.0.1 (Incidence Matrix). Let G = (V,E) be a directed graph. Let D be a matrix with columns
indexed by E and rows indexed by V , where Dv,e = 1 if e = (v, ∗), Dv,e = −1 if e = (∗, v), where ∗ denotes
any vertex, and Dv,e = 0 otherwise. D is called the incidence matrix of G. When the graph is not clear from
the context, we denote the incidence matrix of G by D(G).

Definition F.0.2 (Circulation Polytope). Given a directed graph G, with divergence operator div : RE → RV ,

div(f)(v) =
∑
e∈vin

f(e)−
∑

e∈vout

f(e),

the circulation polytope is:

P (G) = {x ∈ RE : x ≥ 0,
∑

x = 1,div(x) = 0}.

Since the divergence operator is given by D(G), an equivalent description is P (G) = P (
(1
D(G)

)
, e1), where

1 is the all ones vector. We call the x ∈ P (G) normalized circulations of G; circulations of G are x ∈ RE

with x ≥ 0 and div(x) = 0.

We call the set of such polytopes, presented in equational form using incidence matrix of a directed graph,
the set of circulation polytopes. Again, note that the matrix of the presentation is part of our definition, we
do not consider the question of recognizing whether the underlying set of a polytope can be presented as a
circulation polytope. A theorem in [27] uses the circulation polytope to prove that sampling vertices of a
polytope is hard, using [25][Proposition 5.1] and the following folklore theorem.

Theorem F.1 (Folklore, [27]). For G any directed graph, the vertices of P (G) are bijection with the simple
cycles of G. Moreover, this correspondence is efficiently computable.

Proof. The correspondence sends a directed simple cycle C to xC := 1
C 1C , and maps a vertex to its support.

Below we will use the following facts: 1) There is only one normalized circulation of a directed simple cycle.
2) An acyclic digraph has no nonzero circulations. The proof now follows:

• First, we verify that every directed simple cycle produces a vertex. Let C be a simple cycle, and suppose
that there are x, x′ so that xC = x+x′

2 . Then, because x, x′ ≥ 0, supp(xC) = supp(x)∪ supp(x′). Thus, x
and x′ are normalized circulations on the directed simple cycle graph C, hence x = x′.

• Next, we verify that the support of every vertex x is a directed simple cycle. We will suppose for
contradiction that supp(x) is not a directed simple cycle, first argue that there are simple cycles C ̸= C ′

such that C,C ′ ⊆ supp(x), and then use C,C ′ to write x as an average of distinct circulations, showing
that it cannot be a vertex.
First, we observe that there is a simple cycle C ⊆ supp(x), since any acyclic digraph has no nonzero
circulations. Let m = mine∈C(x(e)), and suppose that e is an edge with x(e) = m. We have that x−m1C
satisfies div(x−m1C) = 0 and x−m1C ≥ 0. By assumption x ̸= 0, so y = 1∑

f (x−m1C)(f) (x−m1C) =: y

is a circulation. Thus, supp(y) has a nonzero circulation, and must therefore contain a directed simple
cycle, say C ′. However, C ′ ̸= C, since e ̸∈ C ′ as y(e) = 1∑

f (x−m1C)(f) (x(e)−m1C(e)) = 0.
Given C and C ′ as in the previous paragraph, we define x+ = x+ ϵ

C 1C− ϵ
C′ 1

′
C and x− = x− ϵ

C 1C+ ϵ
C′ 1

′
C .

For ϵ > 0 we have x+ ̸= x− and x = x++x−

2 and div(x+) = div(x−) = 0. Additionally, for ϵ sufficiently
small, we have x+, x− ≥ 0, hence x+, x− ∈ P (G), and so x could not be a vertex. We turn to establishing
the existence of C,C ′.

This, along with proposition 5.1 of [25], which shows that sampling directed simple cycles is NP-hard,
gives the proof [27]:

Theorem F.2 ([27]). Sampling vertices is NP-hard, in the sense that a polynomial time uniform sampler
would imply that RP = NP.

24

Since the focus of this paper is to determine the impact of polytope branchwidth on the problem of
sampling vertices, it is natural to ask about the branchwidth of the circulation polytopes. Indeed, if the
branchwidth of circulation polytopes was already bounded, Khachiyan’s proof that sampling vertices was
NP-hard would extend to bounded branchwidth polytopes. However, we will show that circulation polytopes
have unbounded branchwidth and that the vertex sampling problem is tractable on circulation polytopes
of bounded branchwidth. To do all this, we will need to recall the notion of branchwidth of an undirected
graph.

Definition F.0.3 (The branchwidth of an undirected graph - see [20]). We use the definitions and notation
about labelled cubic trees from §6. Consider an undirected graph G = (V,E). An E-labelled cubic trees
(T, ν) is called a branch decomposition of G. For a subset J ⊆ E, let G[J] denote the subgraph induced
by J , and for a graph G = (V,E) let V (G) = V denote the set of edges of G. The width of an edge f in
T is λT (f) = |V (G[Lf]) ∩ V (G[Rf])|, and the width of T is maxf∈T λT (f). The branchwidth of G is the
minimum width of a branch decomposition of G.

We also need:

Definition F.0.4 (Branchwidth of a matroid - see [20]). (We use the definitions and notation from §6.)
Consider a matroid M = (E, I) with rank function ρ and ground set E. A branch decomposition is an
E-labelled cubic tree (T, ν). The width of an edge f in T is λT (f) = ρ(Lf) + ρ(Lr) − ρ(M) + 1, and the
width of T is maxf∈T λT (f). The branchwidth of M is the minimum width of a branch decomposition of M .

This comports with the concept of branchwidth used in this paper:

Lemma F.0.5. If A is a matrix, and M(A) denotes the matric matroid on A, then bw(M(A)) = bw(P (A, b)),
for any vector b.

Proof. This follows because the matroid rank function is the linear algebra rank of the submatrix formed by
the corresponding columns.

We are interested in the directed simple cycles of a directed graph, but the theory about branchwidth
and fixed parameter tractability of graph algorithms we will use is stated in terms of undirected graphs. We
will therefore need the following definition in order to relate the two directed and undirected settings:

Definition F.0.6 (Underlying undirected graph). Given a directed graph G = (V,E), we let G denote the
underlying undirected graph: the nodes of G are the same as the nodes of G, and there is an undirected edge
{a, b} in G if and only if (a, b) ∈ E ∨ (b, a) ∈ E.

We recall:

Theorem F.3 (Theorem 4 of [20], see also [32] for a related result). Let G = (V,E) be any undirected graph
that has a cycle. Then bw(M(G)) = bw(G), where M(G) is the cycle matroid of G, i.e. the matric matroid
of D(G).

This has the following corollary:

Corollary F.3.1. Let G = (V,E) be a directed graph that has a cycle and that has no digons (edges e, e′
with e = (a, b) and e′ = (b, a)). Then bw(P (G)) = bw(P (

(1
D(G)

)
, e1)) ≥ bw(G).

Proof. As G has no digons, D(G) is an oriented incidence matrix of Ḡ. Thus, the matroids M(Ḡ) and
the matric matroid of D(G) are equal. This implies that bw(D(G)) = bw(M(Ḡ)) = bw(Ḡ). Thus, by
lemma D.0.2, we have bw(

(1
D(G)

)
) ≥ bw(D(G))− 1 = bw(G)− 1.

We now recall:

Theorem F.4 ([16,36]). Let G be an n× n grid graph. Then bw(G) = n.

Corollary F.4.1. Let H be an n× n grid graph, and let G be any digraph with G = H and with no digons.
Then the circulation polytope P (G) has bw(P (G)) ≥ n− 1.

25

Remark F.0.7. The condition about digons can be removed, they just make the arguments cleaner.

Thus, the branchwidths of circulation polytopes are unbounded. To wrap up this section, we will prove
that if we only consider circulation polytopes, then the vertex sampling problem is in FPT in the branchwidth.

We recall the notion of treewidth. An equivalent, and in some respects conceptually simpler definition,
can be found following definition F.2.1 below:

Definition F.0.8 (Treewidth [19]). Let G = (V,E) be a graph. A tree decomposition of G is a pair
({Xi : i ∈ I}, T = (I,M)} where {Xi : i ∈ I} is a collection of subsets of V , called bags, and T is a tree such
that:

•
∪

i∈I Xi = V
• (u, v) ∈ E implies there is some i ∈ I with u, v ∈ Xi.
• For all vertices v, {i ∈ I : v ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi : i ∈ I}, T = (I,M)} is maxi∈I |Xi| − 1. The treewidth of G,
tw(G) is the minimum width over every possible tree decomposition of G.

Theorem F.5 (Theorem 5.1 of [36]). For any graph G, tw(G) ≤ max(⌊ 3
2bw(G)⌋, 2)− 1.

Proposition F.0.9. Fix an integer k. Then, there is a polynomial time algorithm to uniformly sample from
the vertices of any circulation polytope of branchwidth ≤ k.

Proof. If P (G) is such a circulation polytope, it would suffice to uniformly sample from the directed simple
cycles of G because of the efficiently computable bijection given by theorem F.1. We can assume that G
has a cycle, otherwise the polytope is empty and the sampling problem is trivial. Recall that G denotes the
undirected simple graph underlying G.

Construct G′ from G by removing one edge from each digon, then by lemma 6.1.1, bw(D(G′)) ≤
bw(D(G)). Since the underlying undirected simple graphs of G and G′ are equal, bw(G) = bw(D(G′))
by theorem F.3. Finally, we use that bw(D(G)) ≤ bw(

(1
D(G)

)
) = bw(P (G)) to conclude that bw(G) =

bw(D(G′)) ≤ bw(D(G)) ≤ bw(P (G)) ≤ k. Thus, G has treewidth ≤ max(⌊ 3
2k⌋, 2) − 1 by theorem F.5. In

appendix F.1 we verify that the problem of sampling directed simple cycles is fixed parameter tractable in
the treewidth of the underlying undirected graph, proving the claim.

F.1 Counting directed simple cycles for bounded treewidth graphs
To finish the arguments in proposition F.0.9, we verify that sampling directed simple cycles is fixed parameter
tractable in the the treewidth of the underlying undirected graph. We do this by encoding it into a related
problem about undirected graphs, after which we can appeal to metatheorems about MSO2.

Definition F.1.1 (Spoon Representation of a Digraph). Let G = (V,E) be a directed graph. We construct
an undirected representation of it in the following way (probably most clearly understood from fig. 5): First,
start with the node set V and no edges. Then, for each directed edge (a, b) ∈ E, add 2 nodes [ab] and [ab]′

to V , and add undirected edges: a, [ab], [ab], b, [ab], [ab′], [ab′], b, as in fig. 5i). Call the resulting graph s(G);
the spoon graph associated to G. The spoon graph associated to a single edge, depicted in fig. 5i), is called a
spoon graph.

Instead of directed simple cycles in G, we will look for spoon cycles in s(G).

Definition F.1.2 (Spoon Cycle). Let C be a directed cycle graph of length k. Then, a spoon cycle of length
k is a graph isomorphic to s(C), the spoon graph associated to C. See fig. 5ii).

Lemma F.1.3 (Equivalence between directed simple cycles and spoon cycles). The number of directed
simple cycles in G is the same as the number of spoon cycles of s(G).

Proof. Let D(G) denote the set of directed simple cycles of G, and let S(s(G)) denote the set of spoon
cycles of s(G). We define a map sp : D(G) → S(s(G)) that maps a directed cycle to a spoon cycle by
mapping the set of edges to the set of spoons corresponding to those edges. In the other direction, we define
e : S(s(G)) → D(G) by mapping the set of spoons to the set of edges corresponding to those spoons. These
two maps are inverses.

26

a

b

a

b

[ab′]
[ab]

i) ii)

Figure 5: Spoon Constructions: i) Replacing a directed edge with a spoon. ii) A spoon cycle of length 5.

Next we will show that there is a formula in monadic second order logic for graphs5, MSO2, that char-
acterizes the spoon cycles of a given graph. To do so, we need to characterize spoon cycles in terms of
properties that are more easily expressed in MSO2. The following definition and lemma will make the proof
of the characterization cleaner:

Definition F.1.4 (Coning off an edge). If e is an edge in a graph G, we will say that the graph G′ is
obtained by coning off the edge e if V (G′) = V (G) ∪ {∗}, and E(G′) = E(G) ∪ {{∗, a}, {∗, b}} where ∗ is
some vertex not in G. If J ⊂ G, we say that G′ is obtained from G by coning of J if G′ was obtained by
iteratively coning off the edges in J .

Lemma F.1.5. If G is a simple cycle of length 2k, and J ⊆ E is a maximal set of non-pairwise adjacent
edges, then if G′ is obtained from G by coning off the edges in J , then G′ is a spoon cycle of length k.

Now, we have the characterization of spoon cycles:

Lemma F.1.6. Let H be a non-empty graph. Then H is a spoon cycle with at least 2 spoons iff:

1. H is connected.
2. The degrees of nodes in H are either 2 or 3.
3. Both neighbors of every degree 2 node in H have degree 3 and are connected to eachother.
4. The neighbors of degree 3 nodes have degree 2, 3 and 3.

Proof. Let Z = {v ∈ H : deg(v) = 2}. Let H ′ = H \ Z, that is, the graph obtained by deleting all vertices
in Z, and incident edges. Then, by 3., H ′ remains connected. Since Zc in H consists of degree 3 nodes, by
2., and each node in Zc is incident to one node in Z by 4, the nodes in Zc all have degree 2 in H ′. Thus, H ′

is a simple cycle.
It remains to check that H is obtained from H ′ by coning off a maximal set of non-pairwise adjacent

edges in H ′. Let us consider the set of edges J = {{a, b} : ∃v ∈ Z, v ∼ a, v ∼ b}. We will show that J is a
maximal set of non pairwise incident edges in the cycle H, that H is obtained from H ′ by coning off all the
edges in J , and that H has 2k edges. Taken together, those prove via lemma F.1.5 that H is a spoon cycle.
We now verify those properties of J and H.

First, we check that J consists of a non-pairwise adjacent edges of H ′. Suppose that e = {a, b}, e′ =
{b, c} ∈ J . Then there are v, v′ ∈ Z with v ∼ a, v ∼ b and b ∼ v′, c ∼ v′ in H. However, this implies that

5For background on second order logic, the reader is referred to [11, Chapter 7]; for background on these meta-theorems
and MSO2, the reader is referred to [4].

27

{a, v, v′, c} are all neighbors of b in H. Since the max degree is 3, some pair of those have to be equal. We
know that a ̸= c, otherwise e = e′, and that {a, c} ∩ {v, v′} = ∅ as the former is in Zc and the latter in Z.
Therefore, the only possibility is that v = v′. However, this would imply that v is adjacent to a ̸= b ̸= c,
which contradicts v ∈ Z.

Next, we check that H has an even number of edges, and that J is a maximal set. Suppose that
(w1, w2, w3, w4, w5, w6) forms a path in H, and suppose that {w3, w4} ̸∈ J . We will argue that {w1, w2} ∈ J ,
and the same argument will show that {w5, w6} ∈ J . Therefore, since we already know that edges in J
cannot be adjacent, every other edge in H is in J , and in particular H has an even number of edges. Since
w3 ̸∈ Z, it had degree 3 in H. Say that v ∈ Z is incident to w3 in H. We have that v is incident to either
w2 or w4. However, since {w3, w4} ̸∈ J , v cannot be incident to w4. Hence, v is incident to w2, implying
that {w2, w4} ∈ J .

Finally, we observe that by the definition of J and Z, H is obtained from H ′ by coning off all the edges
in J .

Lemma F.1.7. There is an MSO2 formula for spoon cycles.

Proof. The formula will be over a subset of the edges, and will be obtained by ANDing together formulas
for each of the 4 bullets in lemma F.1.6.

First, here is an MSO2 formula that checks that a node v has degree ≥ k in the graph induced by J ⊆ E:
deg≥k,J(v) := ∃v1,...vk∈V ∧ ∃e1,...,e2∈J(

∧
i=1,...k inc(v, ei) ∧

∧
i=1,...,k inc(vi, ei) ∧ (

∧
1≤i<j≤k vi ̸= vj) . Thus,

degk,J(v) = ϕ≥k,J(v) ∧ ¬ϕ≥k+1,J(v) expresses that v has degree exactly k.
Second, as a shorthand for referring to a property ψ quantified over nodes in an edge induced subgraph, we

define Qv∈G[J]ψ(v) = Qv∈V ∃e∈J inc(v, e)∧ψ(v), where Q ∈ {∃,∀}. We also define incJ(a, b) = ∃e∈J inc(a, e)∧
inc(b, e). Given this shorthand notation, here are MSO2 expressions for the 4 properties of lemma F.1.6:

1. ∀Y⊆V ((∀s∈Y ∃e∈J inc(s, e)) ∧ [[∃u,v∈V ∃e′∈X ∧ inc(e′, v) ∧ u ∈ Y ∧ v ̸∈ Y] → ∃e′′∈J∃u′∈Y,v′ ̸∈Y inc(u′, e′′) ∧
inc(v′, e′′)]).
We clarify that this formula checks that for any non-empty proper subset of vertices, Y , in the subgraph
G[J], that there is an edge in J going from Y to the complement in Y in G[J]. Thus, this expression is
true iff G[J] is a connected subgraph.

2. ∀v∈G[J] deg2,J(v) ∨ deg3,J(v).
3. ∀v,a,b∈G[J](deg2,J(v) ∧ incJ(v, a) ∧ incJ(v, b) ∧ a ̸= b) → (incJ(a, b) ∧ deg3,J(a) ∧ deg3,J(b)).
4. ∀v,x1,x2,x3∈G[J](deg3,J(v)∧

∧
i∈[3] incJ(v, xi)∧

∧
i,j∈[3],i̸=j xi ̸= xj)) → (

∨
σ∈S3

(deg3,J(xσ(1))∧deg3,J(xσ(2))∧
deg2,J(xσ(3))))

Thus, we have the following:

Theorem F.6 (Counting directed simple cycles). The problem of counting directed simple cycles of a digraph
G is fixed-parameter tractable in the treewidth of the underlying undirected, simple graph G.

Proof. First, we note that tw(s(G)) = max(2, tw(G)), using proposition F.2.5. Now the result follows from
lemma F.1.3, lemma F.1.7 and the main theorem of [4].

Now we prove the main theorem of this section:

Proposition F.1.8. There is a polynomial time algorithm for uniformly sampling directed simple cycles is
from directed graphs where the underlying undirected graph has bounded treewidth.

Proof. Let DSC(G) denote the set of directed simple cycles of a graph G = (V,E). It suffices to show that
for any sets I, J ⊆ E, one can calculate µI,J := |{α ∈ DSC(G) : I ⊆ α, J ∩ α = ∅}| (see [34] Appendix B1
for details on how to sample given such marginals). Note by lemma F.2.4 that replacing edges by chains
of bigons does not increase the treewidth of the underlying graph, provided it is already 2, since the effect
on the underlying graph is just a sequence of series extensions. Similarly, deleting edges cannot increase
the treewidth. Given sets of edges, I, J , we let Gd,I,J denote the graph with the edges in J removed, and

28

the edges in I replaced by a chain of d bigons. We have that |DSC(Gd,I,J)| =
∑|I|

k=0 2
dk|{α ∈ DSC(G) :

|I ∩ α| = k, J ∩ α = ∅}|. Thus, calling a machine to count |DSC(Gd,I,J)| at d = 1, 2, . . . , |I| lets us compute
µI,J = |{α ∈ DSC(G) : |I ∩ α| = |I|, J ∩ α = ∅}| by inverting the corresponding Vandermonde system.

F.2 Series-parallel extensions do not increase the tree width past 2

The arguments in this section are well-known, the author just couldn’t find a reference for them. To
streamline the arguments, we recall the notion of a partial k-tree:

Definition F.2.1 (k-trees, partial k-trees). A k-tree is any graph that can be recursively constructed in the
following manner. We start with a tree T0 that is a k clique. Then, we obtain Tn from Tn−1 by picking
any k-clique Q of Tn−1 adding a new vertex v and connecting v to each node of Q. A partial k-tree is any
subgraph of a k-tree.

This provides an equivalent definition to the notion of treewidth used in [36] by the following:

Proposition F.2.2 (Theorem 4.4 of [19]). G is a partial k-tree if and only if tw(G) ≤ k. Thus, tw(G) =
min{k : G is a partial k-tree}.

We use the following lemmas above.

Lemma F.2.3 (Split-parallel edge extension). Let G = (V,E) be a graph, and let e = {a, b} ∈ E. Let
G′ be obtained from G by adding a new vertex v, along with edges {a, v} and {v, b}, which we will call a
split-parallel edge extension. Then tw(G′) ≤ max(tw(G), 2)

Proof. Suppose that tw(G) = k ≥ 2. Then there is a k tree H such that G is a subgraph of H. Every
edge in H is in some clique, as can be seen from the inductive construction of k-trees. Thus, let K be a
clique containing e = {a, b}, and let G′ be obtained by coning K with a cone vertex v. Then we obtain an
embedding of H ′ by using the vertex v as well. Thus, tw(G′) ≤ k, which implies the result. On the other
hand, if tw(G) = 1, then G is a forest and in particular embeds into a 2-tree, at which point we can repeat
the above argument.

Lemma F.2.4 (Series extension). Let G be a graph. Let G′ be obtained by a series extension splitting e ∈ E
into e1, e2. Then tw(G′) ≤ tw(G).

Proof. Suppose that tw(G) = k ≥ 2. Then there is a k tree H such that G is a subgraph of H. Every
edge in H is in some clique, as can be seen from the inductive construction of k-trees. Thus, let K be a
clique containing e = {a, b}, and let G′ be obtained by coning K with a cone vertex v. Then we obtain an
embedding of H ′ be rerouting e1 and e2 as (a, v, b). Thus, tw(G′) ≤ k, which implies the result. On the
other hand, if tw(G) = 1, then G is a forest and so is G′.

Together, these imply:

Proposition F.2.5 (Treewidth of underlying undirected and spoon graph). Let G be a directed graph. Let
G be the underlying undirected graph, and let s(G) be the spoon graph. Then tw(s(G)) ≤ max(2, tw(G)).

Proof. One can obtain s(G) from G by series and split-parallel extensions, and therefore the result follows
from lemma F.2.4 and lemma F.2.3. See fig. 6 and the caption for an explanation of how to obtain s(G)
from (G).

29

Figure 6: For any digon in G we replace the underlying edge in G by a digon of spoons. This can be done
by applying a sequence of series and parallel-split extensions by following the local instructions of the top
image. For every directed edge of G which is not part of a digon we apply the series extension then the split
parallel edge extension to obtain a spoon, following the local instructions of the bottom image.

30

	Introduction
	Related Work
	Main Steps for Proving Hardness of Sampling
	Notation and Background
	Hypercube Gadget
	Branchwidth
	Branchwidth Lemmas
	Hypercube Gadget and Branchwidth

	Restricted Vertex Problem
	Proof of Sampling Intractability
	Acknowledgements
	Another Application of the Hypercube Gadget
	Non Self-Reducibility
	Intractability of Approximate Counting
	Additional Branchwidth Lemmas
	Restricted Vertex Problem Under Branchwidth Constraints
	The size of a linear system
	Concluding the reduction

	Branchwidth of the Circulation Polytope
	Counting directed simple cycles for bounded treewidth graphs
	Series-parallel extensions do not increase the tree width past 2

